Bhutan Civil Aviation Requirements Specific Approvals (BCAR-SPA) Initial Issue (October 2021) # तर्वमान्ने नते आयतः त्रमुषा न्यमः तहि । न्यवः वृत्र त्रम्या मन्नः। # Bhutan Civil Aviation Authority Royal Government Of Bhutan Paro: Bhutan #### Foreword The Bhutan Civil Aviation Authority is pleased to issue Bhutan Civil Aviation Requirements- Specific Approvals (BCAR-SPA) initial issue establishing technical requirements for operations requiring specific approvals for the implementation and enforcement of Civil Aviation Act of Bhutan 2016 and rules and regulations regarding civil air operations. These requirements have been developed under the South Asian Regional Initiatives (SARI OPS) to harmonize the air operations requirements in the region. This BCAR-SPA shall supersede the air operations rules and regulations issued earlier and shall come into force from 01 August 2022. **Head of the Authority** **Bhutan Civil Aviation Authority** # **RECORD OF AMENDMENTS** | Issue No | Rev No | Particulars of Issue/ Revision | Amendment
Date | Entered By | |----------|--------|--------------------------------|--------------------|-------------------| | 01 | 00 | Initial issue | 01 October
2021 | Flight operations | | | | | 2021 | # **LIST OF EFFECTIVE PAGES** | Subpart | Page | Issue no/Rev no | Amendment
Date | |---------|------|-----------------|-------------------| | | 1 | 01/00 | 01 October 2021 | | A | 2 | 01/00 | 01 October 2021 | | | 1 | 01/00 | 01 October 2021 | | | 2 | 01/00 | 01 October 2021 | | | 3 | 01/00 | 01 October 2021 | | | 4 | 01/00 | 01 October 2021 | | | 5 | 01/00 | 01 October 2021 | | | 6 | 01/00 | 01 October 2021 | | | 7 | 01/00 | 01 October 2021 | | | 8 | 01/00 | 01 October 2021 | | | 9 | 01/00 | 01 October 2021 | | В | 10 | 01/00 | 01 October 2021 | | | 11 | 01/00 | 01 October 2021 | | | 12 | 01/00 | 01 October 2021 | | | 13 | 01/00 | 01 October 2021 | | | 14 | 01/00 | 01 October 2021 | | | 15 | 01/00 | 01 October 2021 | | | 16 | 01/00 | 01 October 2021 | | | 17 | 01/00 | 01 October 2021 | | | 18 | 01/00 | 01 October 2021 | | С | 1 | 01/00 | 01 October 2021 | | | 1 | 01/00 | 01 October 2021 | | D | 2 | 01/00 | 01 October 2021 | | | 3 | 01/00 | 01 October 2021 | |---|----|-------|-----------------| | | 4 | 01/00 | 01 October 2021 | | | 5 | 01/00 | 01 October 2021 | | | 6 | 01/00 | 01 October 2021 | | | 7 | 01/00 | 01 October 2021 | | | 1 | 01/00 | 01 October 2021 | | | 2 | 01/00 | 01 October 2021 | | | 3 | 01/00 | 01 October 2021 | | | 4 | 01/00 | 01 October 2021 | | | 5 | 01/00 | 01 October 2021 | | | 6 | 01/00 | 01 October 2021 | | | 7 | 01/00 | 01 October 2021 | | | 8 | 01/00 | 01 October 2021 | | | 9 | 01/00 | 01 October 2021 | | | 10 | 01/00 | 01 October 2021 | | E | 11 | 01/00 | 01 October 2021 | | | 12 | 01/00 | 01 October 2021 | | | 13 | 01/00 | 01 October 2021 | | | 14 | 01/00 | 01 October 2021 | | | 15 | 01/00 | 01 October 2021 | | | 16 | 01/00 | 01 October 2021 | | | 17 | 01/00 | 01 October 2021 | | | 18 | 01/00 | 01 October 2021 | | | 19 | 01/00 | 01 October 2021 | | | 20 | 01/00 | 01 October 2021 | | İ | L | | i . | | | 21 | 01/00 | 01 October 2021 | |---|----|-------|-----------------| | | 22 | 01/00 | 01 October 2021 | | | 23 | 01/00 | 01 October 2021 | | | 24 | 01/00 | 01 October 2021 | | | 25 | 01/00 | 01 October 2021 | | | 26 | 01/00 | 01 October 2021 | | | 27 | 01/00 | 01 October 2021 | | | 28 | 01/00 | 01 October 2021 | | F | 1 | 01/00 | 01 October 2021 | | | 1 | 01/00 | 01 October 2021 | | G | 2 | 01/00 | 01 October 2021 | | | 3 | 01/00 | 01 October 2021 | | н | 1 | 01/00 | 01 October 2021 | | | 1 | 01/00 | 01 October 2021 | | | 2 | 01/00 | 01 October 2021 | | I | 3 | 01/00 | 01 October 2021 | | | 4 | 01/00 | 01 October 2021 | | | 5 | 01/00 | 01 October 2021 | | | 1 | 01/00 | 01 October 2021 | | | 2 | 01/00 | 01 October 2021 | | | 3 | 01/00 | 01 October 2021 | | J | 4 | 01/00 | 01 October 2021 | | | 5 | 01/00 | 01 October 2021 | | | 6 | 01/00 | 01 October 2021 | | | 7 | 01/00 | 01 October 2021 | | • | | | | | | 8 | 01/00 | 01 October 2021 | |---|----|-------|-----------------| | | 9 | 01/00 | 01 October 2021 | | | 10 | 01/00 | 01 October 2021 | | | 11 | 01/00 | 01 October 2021 | | | 12 | 01/00 | 01 October 2021 | | | 13 | 01/00 | 01 October 2021 | | К | 1 | 01/00 | 01 October 2021 | | L | 1 | 01/00 | 01 October 2021 | | | 1 | 01/00 | 01 October 2021 | | | 2 | 01/00 | 01 October 2021 | | | 3 | 01/00 | 01 October 2021 | | | 4 | 01/00 | 01 October 2021 | | | 5 | 01/00 | 01 October 2021 | | | 6 | 01/00 | 01 October 2021 | | | 7 | 01/00 | 01 October 2021 | | | 8 | 01/00 | 01 October 2021 | | М | 9 | 01/00 | 01 October 2021 | | | 10 | 01/00 | 01 October 2021 | | | 11 | 01/00 | 01 October 2021 | | | 12 | 01/00 | 01 October 2021 | | | 13 | 01/00 | 01 October 2021 | | | 14 | 01/00 | 01 October 2021 | | | 15 | 01/00 | 01 October 2021 | | | 16 | 01/00 | 01 October 2021 | | | 17 | 01/00 | 01 October 2021 | | • | | | • | | 18 | 01/00 | 01 October 2021 | |----|-------|-----------------| | 19 | 01/00 | 01 October 2021 | | 20 | 01/00 | 01 October 2021 | | 21 | 01/00 | 01 October 2021 | | 22 | 01/00 | 01 October 2021 | | 23 | 01/00 | 01 October 2021 | | 24 | 01/00 | 01 October 2021 | | 25 | 01/00 | 01 October 2021 | | 26 | 01/00 | 01 October 2021 | | 27 | 01/00 | 01 October 2021 | | 28 | 01/00 | 01 October 2021 | | 29 | 01/00 | 01 October 2021 | | tan Civil Aviation Requirements
tan Civil Aviation Authority | Specific Approvals (SPA) | |---|--------------------------| INTENTIONALLY LEFT | BLANK | # **TABLE OF CONTENTS** | RECORD OF AMENDMENTS | i | |--|----| | LIST OF EFFECTIVE PAGES | ii | | TABLE OF CONTENTS | vi | | SUBPART A: GENERAL REQUIREMENTS | 1 | | BCAR.SPA.GEN.100 Competent Authority | 1 | | BCAR.SPA.GEN.105 Application for a specific approval | 1 | | AMC1 BCAR.SPA.GEN.105 (a) Application for a specific approval | 1 | | BCAR.SPA.GEN.110 Privileges of an operator holding a specific approval | 2 | | BCAR.SPA.GEN.115 Changes to a specific approval | 2 | | BCAR.SPA.GEN.120 Continued validity of a specific approval | 2 | | SUBPART B: PERFORMANCE-BASED NAVIGATION (PBN) OPERATION | 1 | | BCAR.SPA.PBN.100 PBN operations | 1 | | GM1 BCAR.SPA.PBN.100 PBN operations | 1 | | BCAR.SPA.PBN.105 PBN operational approval | 2 | | AMC1 BCAR.SPA.PBN.105 (b) PBN operational approval | 3 | | AMC1 BCAR.SPA.PBN.105(c) PBN operational approval | 10 | | GM1 BCAR.SPA.PBN.105(c) PBN operational approval | 11 | | AMC1 BCAR.SPA.PBN.105 (d) PBN operational approval | 13 | | AMC2 BCAR.SPA.PBN.105 (d) PBN operational approval | 14 | | AMC3 BCAR.SPA.PBN.105 (d) PBN operational approval | 17 | | AMC1 BCAR.SPA.PBN.105 (e) PBN operational approval | 18 | | AMC1 BCAR.SPA.PBN.105 (f) PBN operational approval | 18 | | SUBPARTC: OPERATIONS WITH SPECIFIED MINIMUM NAVIGATION PERFORMANCE (MNPS) | 1 | | SUBPART D: OPERATIONS IN AIRSPACE WITH REDUCED VERTICAL SEPARATION MINIMA (RVSM) | 1 | | BCAR.SPA.RVSM.100 RVSM operations | 1 | | BCAR.SPA.RVSM.105 RVSM operational approval | 1 | | AMC1 BCAR.SPA.RVSM.105 RVSM operational approval | 1 | | AMC2 BCAR.SPA.RVSM.105 RVSM operational approval | 2 | | AMC3 BCAR.SPA.RVSM.105 RVSM Operational approval | 5 | | GM1 BCAR.SPA.RVSM.105 (d)(9) RVSM operational approval | 6 | | BCAR.SPA.RVSM.110 RVSM equipment requirements | 6 | | AMC1 BCAR.SPA.RVSM.110 (a) RVSM equipment requirements | 7 | | BCAR.SPA.RVSM.115 RVSM height-keeping errors | 7 | | SUBPART E: LOW VISIBILITY OPERATIONS (LVO) | 1 | | BCAR.SPA.LVO.100 Low Visibility Operations | 1 | |--|----| | AMC1 BCAR.SPA.LVO.100 Low visibility operations | 1 | | AMC2 BCAR.SPA.LVO.100 Low visibility operations | 2 | | AMC3 BCAR.SPA.LVO.100 Low visibility operations | 2 | | AMC4 BCAR.SPA.LVO.100 Low visibility operations | 4 | | AMC5 BCAR.SPA.LVO.100 Low visibility operations | 5 | | AMC6 BCAR.SPA.LVO.100 Low visibility operations | 6 | | AMC7 BCAR.SPA.LVO.100 Low visibility operations | 8 | | GM1 BCAR.SPA.LVO.100 Low visibility operations | 9 | | GM2 BCAR.SPA.LVO.100 Low visibility operations | 10 | | GM1 BCAR.SPA.LVO.100(c),(e) Low visibility operations | 10 | | GM1 BCAR.SPA.LVO.100 (e) Low visibility operations | 12 | | GM1 BCAR.SPA.LVO.100 (f) Low visibility operations | 13 | | BCAR.SPA.LVO.105 LVO approval | 14 | | AMC1 BCAR.SPA.LVO.105 LVO approval | 14 | | AMC2 BCAR.SPA.LVO.105 LVO approval | 16 | | AMC3 BCAR.SPA.LVO.105 LVO approval | 16 | | AMC4 BCAR.SPA.LVO.105 LVO approval | 16 | | AMC5 BCAR.SPA.LVO.105 LVO approval | 17 | | AMC6 BCAR.SPA.LVO.105 LVO approval | 17 | | GM1 BCAR.SPA.LVO.105 LVO approval | 18 | | BCAR.SPA.LVO.110 General operating requirements | 18 | | GM1 BCAR.SPA.LVO.110(c)(4)(i) General operating requirements | 19 | | BCAR.SPA.LVO.115 Aerodrome related requirements | 19 | | BCAR.SPA.LVO.120 Flight crew training and qualifications | 20 | | AMC1 BCAR.SPA.LVO.120 Flight crew training and qualifications | 20 | | GM1 BCAR.SPA.LVO.120 Flight crew training and qualifications | 27 | | BCAR.SPA.LVO.125 Operating procedures | 28 | | AMC1 BCAR.SPA.LVO.125 Operating procedures | 28 | | BCAR.SPA.LVO.130 Minimum equipment | 29 | | SUBPART F: EXTENDED RANGE OPERATIONS WITH TWO-ENGINED AEROPLANES (ETOPS) | 1 | | SUBPART G: TRANSPORT OF DANGEROUS GOODS | 1 | | BCAR.SPA.DG.100 Transport of dangerous goods | 1 | | BCAR.SPA.DG.105 Approval to transport dangerous goods | 1 | | AMC1 BCAR.SPA.DG.105 (a) Approval to transport dangerous goods | 1 | | AMC1 BCAR.SPA.DG.105(b) Approval to transport
dangerous goods | 2 | |---|-----| | GM1 BCAR.SPA.DG.105(b)(6) Approval to transport dangerous goods | 2 | | BCAR.SPA.DG.110 Dangerous goods information and documentation | 2 | | AMC1 BCAR.SPA.DG.110 (a) Dangerous goods information and documentation | 3 | | AMC1 BCAR.SPA.DG.110 (b) Dangerous goods information and documentation | 3 | | SUBPART H: HELICOPTER OPERATIONS WITH NIGHT VISION IMAGING SYSTEMS | 1 | | SUBPART I: HELICOPTER HOIST OPERATIONS | 1 | | BCAR.SPA.HHO.100 Helicopter hoist operations (HHO) | 1 | | BCAR.SPA.HHO.110 Equipment requirements for HHO | 1 | | AMC1 BCAR.SPA.HHO.110 (a) Equipment requirements for HHO | 1 | | BCAR.SPA.HHO.115 HHO communication | 2 | | BCAR.SPA.HHO.125 Performance requirements for HHO | 2 | | BCAR.SPA.HHO.130 Crew requirements for HHO | 2 | | AMC1 BCAR.SPA.HHO.130 (b) (2) (ii) Crew requirements for HHO | 3 | | AMC1 BCAR.SPA.HHO.130 (e) Crew requirements for HHO | 3 | | AMC1 BCAR.SPA.HHO.130 (f) (1) Crew requirements for HHO | 3 | | BCAR.SPA.HHO.135 HHO passenger briefing | 4 | | BCAR.SPA.HHO.140 Information and documentation | 4 | | AMC1 BCAR.SPA.HHO.140 Information and documentation | 5 | | SUBPART J: HELICOPTER EMERGENCY MEDICAL SERVICE OPERATIONS | 1 | | BCAR.SPA.HEMS.100 Helicopter emergency medical service (HEMS) operation | 1 | | GM1 BCAR.SPA.HEMS.100 (a) Helicopter emergency medical service (HEMS) operation | ons | | | 1 | | BCAR.SPA.HEMS.110 Equipment requirements for HEMS operations | 4 | | BCAR.SPA.HEMS.115 Communication | 5 | | BCAR.SPA.HEMS.120 HEMS operating minima | 5 | | GM1 BCAR.SPA.HEMS.120 HEMS operating minima | 5 | | BCAR.SPA.HEMS.125 Performance requirements for HEMS operations | 6 | | GM1 BCAR.SPA.HEMS.125 (b)(3) Performance requirements for HEMS operations | 6 | | AMC1 BCAR.SPA.HEMS.125(b)(4) Performance requirements for HEMS operations | 7 | | BCAR.SPA.HEMS.130 Crew requirements | 7 | | AMC1 BCAR.SPA.HEMS.130 (b)(2) Crew requirements | 8 | | AMC1 BCAR.SPA.HEMS.130 (d) Crew requirements | 8 | | AMC1 BCAR.SPA.HEMS.130 (e) Crew requirements | 8 | | GM1 BCAR.SPA.HEMS.130 (e)(2)(ii) Crew requirements | 9 | | AMC1 BCAR.SPA.HEMS.130 (e)(2)(ii)(B) Crew requirements | 9 | |--|------------| | AMC1 BCAR.SPA.HEMS.130 (f)(1) Crew requirements | 9 | | AMC1 BCAR.SPA.HEMS.130 (f)(2)(ii)(B) Crew requirements | 10 | | BCAR.SPA.HEMS.135 HEMS medical passenger and other personnel briefing | 11 | | AMC1 BCAR.SPA.HEMS.135 (a) HEMS medical passenger and other personnel briefin | ıg11 | | AMC1.1 BCAR.SPA.HEMS.135 (a) HEMS medical passenger and other personnel brief | fing
11 | | AMC1 BCAR.SPA.HEMS.135 (b) HEMS medical passenger and other personnel briefin | 1g11 | | BCAR.SPA.HEMS.140 Information and documentation | 12 | | AMC1 BCAR.SPA.HEMS.140 Information and documentation | 12 | | BCAR.SPA.HEMS.145 HEMS operating base facilities | 12 | | BCAR.SPA.HEMS.150 Fuel supply | 12 | | BCAR.SPA.HEMS.155 Refuelling with passengers embarking, on board or disembarking | 13 | | SUBPART K: HELICOPTER OFFSHORE OPERATIONS | 1 | | SUBPART L: SINGLE-ENGINED TURBINE AEROPLANE OPERATIONS AT NIGHT OR IN INSTRUMMETEOROLOGICAL CONDITIONS (SET-IMC) | 1ENT | | SUBPART M: ELECTRONIC FLIGHT BAGS (EFB) | 1 | | SPA.EFB.100 Use of electronic flight bags (EFBs) – operational approval | 1 | | AMC1 BCAR.SPA.EFB.100 (B) use of electronic flight bad (EFBs)- Operational approv | al 1 | | AMC2 BCAR.SPA.EFB.100 (b) use of electronic flight bags (EFBs) operational approva | al 3 | | AMC3 BCAR.SPA.EFB.100 (b) use of electronic flight bags (EFBs) | 4 | | AMC4 BCAR.SPA.EFB.100 (b) use of electronic flight bags (EFBs) | 5 | | GM1 BCAR.SPA.EFB.130 (b) use of electronic flight bags (EFBs) operational approval | 5 | | GM2 BCAR.SPA.EFB.130 (b) use of electronic flight bags (EFBs) operational approval | 7 | | AMC1 BCAR.SPA.EFB.100 (b) use of electronic flight bags (EFBs) operational approva | al 7 | | AMC1 BCAR.SPA.EFB.100 (b)2 use of electronic flight bags (EFBs) operational approx | al 8 | | AMC1 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approx | val
10 | | AMC2 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags (EFBs) operational approx | val
11 | | AMC3 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags(EFBs) operational appr | oval
12 | | AMC4 BCAR.SPA.EFB.100 (b) use of electronic flight bags (EFBs) operational approva | al 15 | | AMC5 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags (EFBs) operational approx | val
17 | | AMC6 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags (EFBs) operational approx | val
21 | | AMC7 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags (EFBs) operational approval 22 | |--| | AMC8 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval 23 | | AMC9 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval 23 | | AMC10 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval 24 | | GM1 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval 26 | | GM2 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval 27 | | GM3 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval 28 | | GM4 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval 28 | | GM5 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval | | GM6 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval | # **SUBPART A: GENERAL REQUIREMENTS** # **BCAR.SPA.GEN.100** Competent Authority - (a) The competent authority for issuing a specific approval shall be: - (1) BCAA for the commercial operator; - (2) Not applicable for the non commercial operator. - (b) Notwithstanding (a)(2), for the non-commercial operator using aircraft registered in a other country, the applicable requirements under this BCAR for the approval of the following operations shall not apply if these approvals are issued by a other country State of Registry: - (1) Performance-based navigation (PBN); - (2) Not applicable - (3) Reduced vertical separation minima (RVSM) airspace. - (4) low visibility operations(LVO) # BCAR.SPA.GEN.105 Application for a specific approval - (a) The operator applying for the initial issue of a specific approval shall provide to the BCAA the documentation required in the applicable subpart, together with the following information: - (1) the name, address and mailing address of the applicant; - (2) a description of the intended operation. - (b) The operator shall provide the following evidence to the BCAA: - (1) compliance with the requirements of the applicable Subpart; - (2) that the relevant elements defined in the mandatory part of the operational suitability data established in accordance with BCAR M are taken into account. - (c) The operator shall retain records relating to (a) and (b) at least for the duration of the operation requiring a specific approval, or, if applicable, in accordance with BCAR-ORO. # AMC1 BCAR.SPA.GEN.105 (a) Application for a specific approval #### **DOCUMENTATION** - (a) Operating procedures should be documented in the operations manual. - (b) If an operations manual is not required, operating procedures may be described in a manual specifying procedure (procedures manual). If the aircraft flight manual (AFM) or the pilot operating handbook (POH) contains such procedures, they should be considered as acceptable means to document the procedures. # BCAR.SPA.GEN.110 Privileges of an operator holding a specific approval The scope of the activity that an operator is approved to conduct shall be documented and specified: - (a) for operators holding an air operator certificate (AOC) in the operations specifications to the AOC: - (b) for all other operators in the list of specific approval. # BCAR.SPA.GEN.115 Changes to a specific approval When the conditions of a specific approval are affected by changes, the operator shall provide the relevant documentation to the BCAA and obtain prior approval for the operation. # BCAR.SPA.GEN.120 Continued validity of a specific approval Specific approvals shall be issued for an unlimited duration and shall remain valid subject to the operator remaining in compliance with the requirements associated with the specific approval and taking into account the relevant elements defined in the mandatory part of the operational suitability data established in accordance with BCAR-21 # SUBPART B: PERFORMANCE-BASED NAVIGATION (PBN) OPERATION # BCAR.SPA.PBN.100 PBN operations - a) An approval is required for each of the following PBN specifications: - (1) RNP AR APCH; and - (2) Not Applicable - (b) An approval for RNP AR APCH operations shall allow operations on public instrument approach procedures which meet the applicable ICAO procedure design criteria. - (c) A procedure-specific approval for RNP AR APCH shall be required for private instrument approach procedures or any public instrument approach procedure that does not meet the applicable ICAO procedure design criteria, or where required by the Aeronautical Information Publication (AIP) or by a BCAA. #### GM1 BCAR.SPA.PBN.100 PBN operations #### **GENERAL** (a) PBN operations are based on performance requirements, which are expressed in navigation specifications (RNAV specification and RNP specification) in terms of accuracy, integrity, continuity, availability and functionality needed for the proposed operation in the context of a particular airspace concept. Table 1 provides a simplified overview of: - (1) PBN specifications and their applicability for different phases of flight; and - (2) PBN specifications requiring a specific approval. - (b) More detailed guidance material
for the operational use of PBN applications can be found in ICAO Doc 9613 Performance-Based Navigation (PBN) Manual. - (c) Guidance material for the design of RNP AR APCH procedures can be found in ICAO Doc 9905 RNP AR Procedure Design Manual. - (d) Guidance material for the operational approval of PBN operations can be found in ICAO Doc 9997 Performance-Based Navigation (PBN) Operational Approval Manual. - (e) Guidance material for the operational approval of PBN operations can be found in BCAP 4520 **Table 1: Overview of PBN specifications** | FLIGHT PHASE | | | | | | | | | | | |-----------------------------|-------------|-----------------|-------------|-------------|------------------|---------------|------------|-------|--|--| | | En-route | | Arriva
I | | | Departur
e | | | | | | | Oceani
c | Continenta
I | | Initia
I | Intermediat
e | Fina
I | Misse
d | | | | | RNAV10 | 10 | | | | | | | | | | | RNAV 5 | | 5 | 5 | | | | | | | | | RNAV2 | | 2 | 2 | | | | | 2 | | | | RNAV 1 | | 1 | 1 | 1 | 1 | | 1 | 1 | | | | RNP 4 | 4 | | | | | | | | | | | RNP 2 | 2 | 2 | | | | | | | | | | RNP 1 | | | 1 | 1 | 1 | | 1 | 1 | | | | A-RNP | 2 | 2 or 1 | 1-0.3 | 1-0.3 | 1-0.3 | 0.3 | 1–0.3 | 1-0.3 | | | | RNP APCH
(LNAV) | | | | 1 | 1 | 0.3 | 1 | | | | | RNP APCH
(LNAV/VNAV
) | | | | 1 | 1 | 0.3 | 1 | | | | | RNP APCH
(LP) | | | | 1 | 1 | | 1 | | | | | RNP APCH
(LPV) | | | | 1 | 1 | | 1 | | | | | RNP AR APC
H | | | | 1-0.1 | 1-0.1 | 0.3-
0.1 | 1-0.1 | | | | | RNP 0.3 (H) | | 0.3 | 0.3 | 0.3 | 0.3 | | 0.3 | 0.3 | | | Numbers specify the accuracy level # BCAR.SPA.PBN.105 PBN operational approval To obtain a PBN specific approval from the BCAA, the operator shall provide evidence that: - (a) the relevant airworthiness approval, suitable for the intended PBN operation, is stated in the AFM or other document that has been approved by the certifying authority as part of an airworthiness assessment or is based on such approval; - (b) a training programme for the flight crew members and relevant personnel involved in the flight preparation has been established; - (c) a safety assessment has been carried out; - (d) operating procedures have been established specifying: - (1) the equipment to be carried, including its operating limitations and appropriate entries in the minimum equipment list (MEL); - (2) flight crew composition, qualification and experience; - (3) normal, abnormal and contingency procedures; and - (4) electronic navigation data management; - (e) a list of reportable events has been specified; and - (f) a management RNP monitoring programme has been established for RNP AR APCH operations, if applicable. # AMC1 BCAR.SPA.PBN.105 (b) PBN operational approval #### FLIGHT CREW TRAINING AND QUALIFICATIONS — GENERAL PROVISIONS - (a) The operator should ensure that flight crew members training programmes for RNP AR APCH include structured courses of ground and FSTD training. - (1) Flight crew members with no RNP AR APCH experience should complete the full training programme prescribed in (b), (c), and (d) below. - (2) Flight crew members with RNP AR APCH experience with another operator may undertake an: - (i) abbreviated ground training course if operating a different type or class from that on which the previous RNP AR experience was gained; - (ii) abbreviated ground and FSTD training course if operating the same type or class and variant of the same type or class on which the previous RNP. AR experience was gained; - (iii) the abbreviated course should include at least the provisions of (d)(1), (c)(1) and (c)(2)(x) as appropriate. - (iv) The operator may reduce the number of approaches/landings required by (c)(2)(xii) if the type/class or the variant of the type or class has the same or similar: - (A) level of technology (flight guidance system (FGS)); - (B) operating procedures for navigation performance monitoring; and - (C) handling characteristics as the previously operated type or class. - (3) Flight crew members with RNP AR APCH experience with the operator may undertake an abbreviated ground and FSTD training course: - (i) when changing aircraft type or class, the abbreviated course should include at least the provisions of (d)(1), (c)(1), (c)(2); - (ii) when changing to a different variant of aircraft within the same type or class rating that has the same or similar of all of the following: - (A) level of technology (flight guidance system (FGS)); - (B) operating procedures for navigation performance monitoring; and - (C) handling characteristics as the previously operated type or class. A difference course or familiarisation appropriate to the change of variant should fulfil the abbreviated course provisions. - (iii) when changing to a different variant of aircraft within the same type or class rating that has significantly different at least one of the following: - (A) level of technology (FGS); - (B) operating procedures for navigation performance monitoring; and - (C) handling characteristics, the provisions of (c)(1) and (c)(2) should be fulfilled. - (4) The operator should ensure when undertaking RNP AR APCH operations with different variant(s) of aircraft within the same type or class rating, that the differences and/or similarities of the aircraft concerned justify such operations, taking into account at least the following: - (i) the level of technology, including the: - (A) FGS and associated displays and controls; - (B) FMS and its integration or not with the FGS; and - (C) on-board performance monitoring and alerting (OBPMA) system; - (ii) operating procedures, including: - (A) navigation performance monitoring; - (B) approach interruption and missed approach including while in turn along an RF leg; - (C) abnormal procedures in case of loss of system redundancy affecting the guidance or the navigation; and - (D) abnormal and contingency procedures in case of total loss of RNP capability; and - (iii) handling characteristics, including: - (A) manual approach with RF leg; - (B) manual landing from automatic guided approach; and - (C) manual missed approach procedure from automatic approach. - (b) Ground training - (1) Ground training for RNP AR APCH should address the following subjects during the initial introduction of a flight crew member to RNP AR APCH systems and operations. For recurrent programmes, the curriculum need only review initial curriculum items and address new, revised, or emphasised items. - (2) General concepts of RNP AR APCH operation - (i) RNP AR APCH training should cover RNP AR APCH systems theory to the extent appropriate to ensure proper operational use. Flight crew members should understand basic concepts of RNP AR APCH systems, operation, classifications, and limitations. - (ii) The training should include general knowledge and operational application of RNP AR APCH instrument approach procedures. This training module should in particular address the following specific elements: - (A) the definitions of RNAV, RNP, RNP APCH, RNP AR APCH, RAIM, and containment areas; - (B) the differences between RNP AR APCH and RNP APCH; - (C) the types of RNP AR APCH procedures and familiarity with the charting of these procedures; - (D) the programming and display of RNP and aircraft specific displays, e.g. actual navigation performance; - (E) the methods to enable and disable the navigation updating modes related to RNP; - (F) the RNP values appropriate for different phases of flight and RNP AR APCH instrument procedures and how to select, if necessary; - (G) the use of GNSS RAIM (or equivalent) forecasts and the effects of RAIM 'holes' on RNP AR APCH procedures availability; - (H) when and how to terminate RNP navigation and transfer to conventional navigation due to loss of RNP and/or required equipment; - (I) the method to determine if the navigation database is current and contains required navigational data; - (J) the explanation of the different components that contribute to the total system error and their characteristics, e.g. drift characteristics when using IRU with no radio updating, QNH mistakes; - (K) the temperature compensation: Flight crew members operating avionics systems with compensation for altimetry errors introduced by deviations from ISA may disregard the temperature limits on RNP AR APCH procedures if flight crew training on use of the temperature compensation function is provided by the operator and the compensation function is utilised by the crew. However, the training should also recognise if the temperature compensation by the system is applicable to the VNAV guidance and is not a substitute for the flight crew compensating for the temperature effects on minimum altitudes or the DA/H; - (L) the effect of wind on aircraft performance during RNP AR APCH operations and the need to positively remain within RNP containment area, including any operational wind limitation and aircraft configuration essential to safely complete an RNP AR APCH operation; - (M) the effect of groundspeed on compliance with RNP AR APCH procedures and bank angle restrictions that may impact on the ability to remain on the course centreline. For RNP procedures, aircraft are expected to maintain the standard speeds associated with the applicable category unless more stringent constraints are published; - (N) the relationship between RNP and the appropriate approach minima line on an approved published RNP AR APCH procedure and any operational limitations if the available RNP degrades or is not available prior to an approach (this should include flight crew operating procedures outside the FAF versus inside the FAF); - (O) understanding alerts that may occur from the loading and use of improper RNP values for a desired segment of an RNP AR APCH procedure; - (P) understanding the performance requirement to couple the autopilot/flight director to the navigation system's lateral guidance on RNP AR APCH procedures requiring an RNP of less than RNP 0.3; -
(Q) the events that trigger a missed approach when using the aircraft's RNP capability to complete an RNP AR APCH procedure; - (R) any bank angle restrictions or limitations on RNP AR APCH procedures; - (S) ensuring flight crew members understand the performance issues associated with reversion to radio updating, know any limitations on the use of DME and VOR updating; and - (T) the familiarisation with the terrain and obstacles representations on navigation displays and approach charts. - (3) ATC communication and coordination for use of RNP AR APCH - (i) Ground training should instruct flight crew members on proper flight plan classifications and any ATC procedures applicable to RNP AR APCH operations. - (ii) Flight crew members should receive instruction on the need to advise ATC immediately when the performance of the aircraft's navigation system is no longer adequate to support continuation of an RNP AR APCH operation. - (4) RNP AR APCH equipment components, controls, displays, and alerts - (i) Theoretical training should include discussion of RNP terminology, symbology, operation, optional controls, and display features, including any items unique to an operator's implementation or systems. The training should address applicable failure alerts and limitations. - (ii) Flight crew members should achieve a thorough understanding of the equipment used in RNP operations and any limitations on the use of the equipment during those operations. - (iii) Flight crew members should also know what navigation sensors form the basis for their RNP AR APCH compliance, and they should be able to assess the impact of failure of any avionics or a known loss of ground systems on the remainder of the flight plan. - (5) AFM information and operating procedures - (i) Based on the AFM or other aircraft eligibility evidence, the flight crew should address normal and abnormal operating procedures, responses to failure alerts, and any limitations, including related information on RNP modes of operation. - (ii) Training should also address contingency procedures for loss or degradation of the RNP AR APCH capability. - (iii) The manuals used by the flight should contain this information. - (6) MEL operating provisions - (i) Flight crew members should have a thorough understanding of the MEL entries supporting RNP AR APCH operations. - (c) Initial FSTD training - (1) In addition to ground training, flight crew members should receive appropriate practical skill training in an FSTD. - (i) Training programmes should cover the proper execution of RNP AR APCH operations in compliance with the manufacturer's documentation. - (ii) The training should include: - (A) RNP AR APCH procedures and limitations; - (B) standardisation of the set-up of the cockpit's electronic displays during an RNP AR APCH operation; - (C) recognition of the aural advisories, alerts and other annunciations that can impact on compliance with an RNP AR APCH procedure; and - (D) the timely and correct responses to loss of RNP AR APCH capability in a variety of scenarios embracing the breadth of the RNP AR APCH procedures the operator plans to complete. - (2) FSTD training should address the following specific elements: - (i) procedures for verifying that each flight crew member's altimeter has the current setting before commencing the final approach of an RNP AR APCH operation, including any operational limitations associated with the source(s) for the altimeter setting and the latency of checking and setting the altimeters for landing; - (ii) use of aircraft RADAR, TAWS or other avionics systems to support the flight crew's track monitoring and weather and obstacle avoidance; - (iii) concise and complete flight crew briefings for all RNP AR APCH procedures and the important role crew resource management (CRM) plays in successfully completing an RNP AR APCH operation; - (iv) the importance of aircraft configuration to ensure the aircraft maintains any mandated speeds during RNP AR APCH operations; - (v) the potentially detrimental effect of reducing the flap setting, reducing the bank angle or increasing airspeeds may have on the ability to comply with an RNP AR APCH operation; - (vi) flight crew members understand and are capable of programming and/or operating the FMC, autopilot, autothrottles, RADAR, GNSS, INS, EFIS (including the moving map), and TAWS in support of RNP AR APCH operations; - (vii) handling of TOGA to LNAV transition as applicable, particularly while in turn; - (viii) monitoring of flight technical error (FTE) and related go-around operation; - (ix) handling of loss of GNSS signals during a procedure; - (x) handling of engine failure during the approach operation; - (xi) applying contingency procedures for a loss of RNP capability during a missed approach. Due to the lack of navigation guidance, the training should emphasise the flight crew contingency actions that achieve separation from terrain and obstacles. The operator should tailor these contingency procedures to their specific RNP AR APCH procedures; and - (xii) as a minimum, each flight crew member should complete two RNP approach procedures for each duty position (pilot flying and pilot monitoring) that employ the unique RNP AR APCH characteristics of the operator's RNP AR APCH procedures (e.g. RF legs, missed approach). One procedure should culminate in a transition to landing and one procedure should culminate in execution of an RNP missed approach procedure. #### FLIGHT CREW TRAINING AND QUALIFICATIONS — CONVERSION TRAINING - (d) Flight crew members should complete the following RNP AR APCH training if converting to a new type or class or variant of aircraft in which RNP AR operations will be conducted. For abbreviated courses, the provisions prescribed in (a)(2), (a)(3) and (a)(4) should apply. - (1) Ground training Taking into account the flight crew member's RNP AR APCH previous training and experience, flight crew members should undertake an abbreviated ground training that should include at least the provisions of (b)(2)(D) to (I), (b)((2)(N)) to (R), (b)(2)(S), and (b)(3) to (6). (2) FSTD training The provisions prescribed in (a) should apply, taking into account the flight crew member's RNP AR APCH training and experience. # FLIGHT CREW TRAINING AND QUALIFICATIONS — RNP AR APCH PROCEDURES REQUIRING A PROCEDURE-SPECIFIC APPROVAL - (e) Before starting an RNP AR APCH procedure for which a procedure-specific approval is required, flight crew members should undertake additional ground training and FSTD training, as appropriate. - (1) The operator should ensure that the additional training programmes for such procedures include as at least all of the following: - (i) the provisions of (c)(1), (c)(2)(x) as appropriate and customised to the intended operation; - (ii) the crew training recommendations and mitigations stated in the procedure flight operational safety assessment (FOSA); and - (iii) specific training and operational provision published in the AIP, where applicable. - (2) Flight crew members with prior experience of RNP AR APCH procedures for which a procedure-specific approval is required may receive credit for all or part of these provisions provided the current operator's RNP AR APCH procedures are similar and require no new pilot skills to be trained in an FSTD. - (3) Training and checking may be combined and conducted by the same person with regard to (f)(2). - (4) In case of a first RNP AR APCH application targeting directly RNP AR APCH procedures requiring procedure-specific approvals, a combined initial and additional training and checking, as appropriate, should be acceptable provided the training and checking includes all provisions prescribed by (a), (b), (c), (d) as appropriate, (e) and (f). #### FLIGHT CREW TRAINING AND QUALIFICATIONS — CHECKING OF RNP AR APCH KNOWLEDGE - (f) Initial checking of RNP AR APCH knowledge and procedures - (1) The operator should check flight crew members' knowledge of RNP AR APCH procedures prior to employing RNP AR APCH operations. As a minimum, the check should include a thorough review of flight crew procedures and specific aircraft performance requirements for RNP AR APCH operations. - (2) The initial check should include one of the following: - (i) A check by an examiner using an FSTD. - (ii) A check by a TRE, CRE, SFE or a commander nominated by the operator during LPCs, OPCs or line flights that incorporate RNP AR APCH operations that employ the unique RNP AR APCH characteristics of the operator's RNP AR APCH procedures. - (iii) Line-oriented flight training (LOFT)/line-oriented evaluation (LOE). LOFT/LOE programmes using an FSTD that incorporates RNP AR APCH operations that employ the unique RNP AR APCH characteristics (i.e. RF legs, RNP missed approach) of the operator's RNP AR APCH procedures. - (3) Specific elements that should be addressed are: - (i) demonstration of the use of any RNP AR APCH limits/minimums that may impact various RNP AR APCH operations; - (ii) demonstration of the application of radio-updating procedures, such as enabling and disabling ground-based radio updating of the FMC (e.g. DME/DME and VOR/DME updating) and knowledge of when to use this feature; - (iii) demonstration of the ability to monitor the actual lateral and vertical flight paths relative to programmed flight path and complete the appropriate flight crew procedures when exceeding a lateral or vertical FTE limit; - (iv) demonstration of the ability to read and adapt to a RAIM (or equivalent) forecast, including forecasts predicting a lack of RAIM availability; - demonstration of the proper set-up of the FMC, the weather RADAR, TAWS, and moving map for the various RNP AR APCH operations and scenarios the operator plans to implement; - (vi) demonstration of the use of flight crew briefings and checklists for RNP AR APCH operations with emphasis on CRM; - (vii) demonstration of knowledge of and ability to perform an RNP AR APCH missed approach
procedure in a variety of operational scenarios (i.e. loss of navigation or failure to acquire visual conditions); - (viii) demonstration of speed control during segments requiring speed restrictions to ensure compliance with an RNP AR APCH procedure; - (ix) demonstration of competent use of RNP AR APCH plates, briefing cards, and checklists; - (x) demonstration of the ability to complete a stable RNP AR APCH operation: bank angle, speed control, and remaining on the procedure's centreline; and - (xi) knowledge of the operational limit for deviation from the desired flight path and of how to accurately monitor the aircraft's position relative to vertical flight path. #### FLIGHT CREW TRAINING AND QUALIFICATIONS — RECCURRENT TRAINING (g) The operator should incorporate recurrent training that employs the unique RNP AR APCH characteristics of the operator's RNP AR APCH procedures as part of the overall training programme. - (1) A minimum of two RNP AR APCH should be flown by each flight crew member, one for each duty position (pilot flying and pilot monitoring), with one culminating in a landing and one culminating in a missed approach, and may be substituted for any required 3D approach operation. - (2) In case of several procedure-specific RNP AR APCH approvals, the recurrent training should focus on the most demanding RNP AR APCH procedures giving credit on the less demanding ones. #### TRAINING FOR PERSONNEL INVOLVED IN THE FLIGHT PREPARATION - (h) The operator should ensure that training for flight operation officers/dispatchers should include: - (1) the different types of RNP AR APCH procedures; - (2) the importance of specific navigation equipment and other equipment during RNP AR APCH operations and related RNP AR APCH requirements and operating procedures; - (3) the operator's RNP AR APCH approvals; - (4) MEL requirements; - (5) aircraft performance, and navigation signal availability, e.g. GNSS RAIM/predictive RNP capability tool, for destination and alternate aerodromes. # AMC1 BCAR.SPA.PBN.105(c) PBN operational approval # FLIGHT OPERATIONAL SAFETY ASSESSMENT (FOSA) - (a) For each RNP AR APCH procedure, the operator should conduct a flight operational safety assessment (FOSA) proportionate to the complexity of the procedure. - (b) The FOSA should be based on: - (1) restrictions and recommendations published in AIPs; - (2) the fly ability check; - (3) an assessment of the operational environment; - (4) the demonstrated navigation performance of the aircraft; and - (5) the operational aircraft performance. - (c) The operator may take credit from key elements from the safety assessment carried out by the ANSP or the aerodrome operator. GM1 BCAR.SPA.PBN.105(c) PBN operational approval #### FLIGHT OPERATIONAL SAFETY ASSESSMENT (FOSA) - (a) Traditionally, operational safety has been defined by a target level of safety (TLS) and specified as a risk of collision of 10⁻⁷ per approach operation. For RNP AR APCH operations, conducting the FOSA methodology contribute to achieving the TLS. The FOSA is intended to provide a level of flight safety that is equivalent to the traditional TLS, but using methodology oriented to performance-based flight operations. Using the FOSA, the operational safety objective is met by considering more than the aircraft navigation system alone. The FOSA blends quantitative and qualitative analyses and assessments by considering navigation systems, aircraft performance, operating procedures, human factor aspects and the operational environment. During these assessments conducted under normal and failure conditions, hazards, risks and the associated mitigations are identified. The FOSA relies on the detailed criteria for the aircraft capabilities and instrument procedure design to address the majority of general technical, procedure and process factors. Additionally, technical and operational expertise and prior operator experience with RNP AR APCH operations are essential elements to be considered in the conduct and conclusion of the FOSA. - (b) The following aspects need to be considered during FOSA, in order to identify hazards, risks and mitigations relevant to RNP AR APCH operations: - (1) Normal performance: lateral and vertical accuracy are addressed in the aircraft airworthiness standards, aircraft and systems operate normally in standard configurations and operating modes, and individual error components are monitored/truncated through system design or flight crew procedure. - (2) Performance under failure conditions: lateral and vertical accuracy are evaluated for aircraft failures as part of the aircraft certification. Additionally, other rare-normal and abnormal failures and conditions for ATC operations, flight crew procedures, infrastructure and operating environment are assessed. Where the failure or condition results are not acceptable for continued operation, mitigations are developed or limitations established for the aircraft, flight crew and/or operation. #### (3) Aircraft failures - (i) System failure: Failure of a navigation system, flight guidance system, flight instrument system for the approach, or missed approach (e.g. loss of GNSS updating, receiver failure, autopilot disconnect, FMS failure, etc.). Depending on the aircraft, this may be addressed through aircraft design or operating procedure to cross-check guidance (e.g. dual equipage for lateral errors, use of terrain awareness and warning system). - (ii) Malfunction of air data system or altimetry: flight crew procedure cross-check between two independent systems may mitigate this risk. #### (4) Aircraft performance - (i) Inadequate performance to conduct the approach operation: the aircraft capabilities and operating procedures ensure that the performance is adequate on each approach, as part of flight planning and in order to begin or continue the approach. Consideration should be given to aircraft configuration during approach and any configuration changes associated with a missed approach operation (e.g. engine failure, flap retraction, re-engagement of autopilot in LNAV mode). - (ii) Loss of engine: loss of an engine while on an RNP AR APCH operation is a rare occurrence due to high engine reliability and the short exposure time. The operator needs to take appropriate action to mitigate the effects of loss of engine, initiating a go-around and manually taking control of the aircraft if necessary. #### (5) Navigation services - (i) Use of a navigation aid outside of designated coverage or in test mode: aircraft airworthiness standards and operating procedures have been developed to address this risk. - (ii) Navigation database errors: instrument approach procedures are validated through flight validation specific to the operator and aircraft, and the operator should have a process defined to maintain validated data through updates to the navigation database. #### (6) ATC operations - (i) Procedure assigned to non-approved aircraft: flight crew are responsible for rejecting the clearance. - (ii) ATC provides 'direct to' clearance to or vectors aircraft onto approach such that performance cannot be achieved. - (iii) Inconsistent ATC phraseology between controller and flight crew. # (7) Flight crew operations - (i) Erroneous barometric altimeter setting: flight crew entry and cross-check procedures may mitigate this risk. - (ii) Incorrect procedure selection or loading: flight crew procedures should be available to verify that the loaded procedure matches the published procedure, line of minima and aircraft airworthiness qualification. - (iii) Incorrect flight control mode selected: training on importance of flight control mode, flight crew procedure to verify selection of correct flight control mode. - (iv) Incorrect RNP entry: flight crew procedure to verify RNP loaded in system matches the published value. - (v) Missed approach: balked landing or rejected landing at or below DA/H. - (vi) Poor meteorological conditions: loss or significant reduction of visual reference that may result in a go-around. #### (8) Infrastructure - GNSS satellite failure: this condition is evaluated during aircraft qualification to ensure obstacle clearance can be maintained, considering the low likelihood of this failure occurring. - (ii) Loss of GNSS signals: relevant independent equipage, e.g. IRS/INS, is mandated for RNP AR APCH procedures with RF legs and approaches where the accuracy for the missed approach is less than 1 NM. For other approaches, operating procedures are used to approximate the published track and climb above obstacles. - (iii) Testing of ground navigation aids in the vicinity of the approach: aircraft and operating procedures should detect and mitigate this event. #### (9) Operating conditions (i) Tailwind conditions: excessive speed on RF legs may result in inability to maintain track. This is addressed through aircraft airworthiness standards on the limits of - command guidance, inclusion of 5 degrees of bank manoeuvrability margin, consideration of speed effect and flight crew procedure to maintain speeds below the maximum authorised for the RNP AR APCH procedure. - (ii) Wind conditions and effect on FTE: nominal FTE is evaluated under a variety of wind conditions, and flight crew procedures to monitor and limit deviations to ensure safe operation. - (iii) Extreme temperature effects of barometric altitude (e.g. extreme cold temperatures, known local atmospheric or weather phenomena, high winds, severe turbulence, etc.): the effect of this error on the vertical path is mitigated through the procedure design and flight crew procedures, with an allowance for aircraft that compensate for this effect to conduct procedures regardless of the published temperature limit. The effect of this error on minimum segment altitudes and the DA/H are addressed in an equivalent manner to all other approach operations. #### AMC1 BCAR.SPA.PBN.105 (d) PBN operational approval #### **OPERATIONAL CONSIDERATIONS FOR
RNP AR APCH** - (a) MEL - (1) The operator's MEL should be developed/revised to address the equipment provisions for RNP AR APCH operations. - (2) An operational TAWS Class A should be available for all RNP AR APCH operations. The TAWS should use altitude values that are compensated for local pressure and temperature effects (e.g. corrected barometric and GNSS altitude), and include significant terrain and obstacle data. - (b) Autopilot and flight director - (1) For RNP AR APCH operations with RNP values less than RNP 0.3 or with RF legs, the autopilot or flight director driven by the area navigation system should be used. Thus, the flight crew should check that the autopilot/flight director is installed and operational. - (c) Pre-flight RNP assessment - (1) The operator should have a predictive performance capability, which can determine if the specified RNP will be available at the time and location of a desired RNP operation. This capability can be a ground service and need not be resident in the aircraft's avionics equipment. The operator should establish procedures requiring use of this capability as both a pre-flight preparation tool and as a flight-following tool in the event of reported failures. - (2) This predictive capability should account for known and predicted outages of GNSS satellites or other impacts on the navigation system's sensors. The prediction programme should not use a mask angle below 5 degrees, as operational experience indicates that satellite signals at low elevations are not reliable. The prediction should use the actual GNSS constellation with the RAIM (or equivalent) algorithm identical to or more conservative than that used in the actual equipment. - (3) The RNP assessment should consider the specific combination of the aircraft capability (sensors and integration), as well as their availability. - (d) NAVAID exclusion (1) The operator should establish procedures to exclude NAVAID facilities in accordance with NOTAMs (e.g. DMEs, VORs, localisers). Internal avionics reasonableness checks may not be adequate for RNP operations. ### (e) Navigation database currency - (1) During system initialisation, the flight crew should confirm that the navigation database is current. Navigation databases should be current for the duration of the flight. If the AIRAC cycle is due to change during flight, the flight crew should follow procedures established by the operator to ensure the accuracy of navigation data. - (2) The operator should not allow the flight crew to use an expired database. # AMC2 BCAR.SPA.PBN.105 (d) PBN operational approval #### **FLIGHT CONSIDERATIONS** #### (a) Modification of flight plan The flight crew should not be authorised to fly a published RNP AR APCH procedure unless it is retrievable by the procedure name from the aircraft navigation database and conforms to the charted procedure. The lateral path should not be modified; with the exception of accepting a clearance to go direct to a fix in the approach procedure that is before the FAF and that does not immediately precede an RF leg. The only other acceptable modification to the loaded procedure is to change altitude and/or airspeed waypoint constraints on the initial, intermediate, or missed approach segments flight plan fixes (e.g. to apply temperature corrections or comply with an ATC clearance/instruction). ### (b) Mandatory equipment The flight crew should have either a mandatory list of equipment for conducting RNP AR APCH operations or alternate methods to address in-flight equipment failures that would prohibit RNP AR APCH operations (e.g. crew warning systems, quick reference handbook). # (c) RNP management Operating procedures should ensure that the navigation system uses the appropriate RNP values throughout the approach operation. If the navigation system does not extract and set the navigation accuracy from the on-board navigation database for each segment of the procedure, then operating procedures should ensure that the smallest navigation accuracy required to complete the approach or the missed approach is selected before initiating the approach operation (e.g. before the IAF). Different IAFs may have different navigation accuracy, which are annotated on the approach chart. #### (d) Loss of RNP The flight crew should ensure that no loss of RNP annunciation is received prior to commencing the RNP AR APCH operation. During the approach operation, if at any time a loss of RNP annunciation is received, the flight crew should abandon the RNP AR APCH operation unless the pilot has in sight the visual references required to continue the approach operation. #### (e) Radio updating Initiation of all RNP AR APCH procedures is based on GNSS updating. The flight crew should comply with the operator's procedures for inhibiting specific facilities. #### (f) Approach procedure confirmation The flight crew should confirm that the correct procedure has been selected. This process includes confirmation of the waypoint sequence, reasonableness of track angles and distances, and any other parameters that can be altered by the flight crew, such as altitude or speed constraints. A navigation system textual display or navigation map display should be used. - (g) Track deviation monitoring - (1) The flight crew should use a lateral deviation indicator, flight director and/or autopilot in lateral navigation mode on RNP AR APCH operations. The flight crew of an aircraft with a lateral deviation indicator should ensure that lateral deviation indicator scaling (full-scale deflection) is suitable for the navigation accuracy associated with the various segments of the RNP AR APCH procedure. The flight crew is expected to maintain procedure centrelines, as depicted by on-board lateral deviation indicators and/or flight guidance during the entire RNP AR APCH operations unless authorised to deviate by ATC or demanded under emergency conditions. For normal operations, cross-track error/deviation (the difference between the area-navigation-system-computed path and the aircraft position relative to the path) should be limited to the navigation accuracy (RNP) associated with the procedure segment. - (2) Vertical deviation should be monitored above and below the glide-path; the vertical deviation should be within ± 75 ft of the glide-path during the final approach segment. - (3) Flight crew should execute a missed approach operation if: - (i) the lateral deviation exceeds one time the RNP value; or - (ii) the deviation below the vertical path exceeds 75 ft or half-scale deflection where angular deviation is indicated, at any time; or - (iii) the deviation above the vertical path exceeds 75 ft or half-scale deflection where angular deviation is indicated; at or below 1 000 ft above aerodrome level; unless the pilot has in sight the visual references required to continue the approach operation. - (4) Where a moving map, low-resolution vertical deviation indicator (VDI), or numeric display of deviations are to be used, flight crew training and procedures should ensure the effectiveness of these displays. Typically, this involves demonstration of the procedure with a number of trained flight crew members and inclusion of this monitoring procedure in the recurrent RNP AR APCH training programme. - (5) For installations that use a CDI for lateral path tracking, the AFM should state which navigation accuracy and operations the aircraft supports and the operational effects on the CDI scale. The flight crew should know the CDI full-scale deflection value. The avionics may automatically set the CDI scale (dependent on phase of flight) or the flight crew may manually set the scale. If the flight crew manually selects the CDI scale, the operator should have procedures and training in place to assure the selected CDI scale is appropriate for the intended RNP operation. The deviation limit should be readily apparent given the scale (e.g. full-scale deflection). - (h) System cross-check - (1) The flight crew should ensure the lateral and vertical guidance provided by the navigation system is consistent. - (i) Procedures with RF legs - (1) When initiating a missed approach operation during or shortly after the RF leg, the flight crew should be aware of the importance of maintaining the published path as closely as possible. Operating procedures should be provided for aircraft that do not stay in LNAV when a missed approach is initiated to ensure the RNP AR APCH ground track is maintained. (2) The flight crew should not exceed the maximum airspeed values shown in Table 1 throughout the RF leg. For example, a Category C A320 should slow to 160 KIAS at the FAF or may fly as fast as 185 KIAS if using Category D minima. A missed approach operation prior to DA/H may require compliance with speed limitation for that segment. | Indicated airspeed (Knots) | | | | | | | | | | | |-------------------------------------|---|-------|-------|-------|--------------|--|--|--|--|--| | Segment | Indicated airspeed by aircraft category | | | | | | | | | | | Segment | Cat A | Cat B | Cat C | Cat D | Cat E | | | | | | | Initial & intermediate (IAF to FAF) | 150 | 180 | 240 | 250 | 250 | | | | | | | Final (FAF to DA) | 100 | 130 | 160 | 185 | as specified | | | | | | | Missed approach (DA/H to MAHP) | 110 | 150 | 240 | 265 | as specified | | | | | | | Airspeed restriction* | as specified | | | | | | | | | | ^{*}Airspeed restrictions may be used to reduce turn radius regardless of aircraft category. # (j) Temperature compensation For aircraft with temperature compensation capabilities, the flight crew may disregard the temperature limits on RNP procedures if the operator provides pilot training on the use of the temperature compensation function. It should be noted that a temperature compensation by the system is applicable to the VNAV guidance and is not a substitute for the flight crew compensating for temperature effects on
minimum altitudes or DA/H. The flight crew should be familiar with the effects of the temperature compensation on intercepting the compensated path as described in applicable requirements. #### (k) Altimeter setting Due to the performance-based obstruction clearance inherent in RNP instrument procedures, the flight crew should verify that the most current aerodrome altimeter is set prior to the FAF. The operator should take precautions to switch altimeter settings at appropriate times or locations and request a current altimeter setting if the reported setting may not be recent, particularly at times when pressure is reported or expected to be rapidly decreasing. Execution of an RNP operation necessitates the current altimeter setting for the aerodrome of intended landing. Remote altimeter settings should not be allowed. #### (I) Altimeter cross-check - (1) The flight crew should complete an altimetry cross-check ensuring both pilots' altimeters agree within ± 100 ft prior to the FAF but no earlier than when the altimeters are set for the aerodrome of intended landing. If the altimetry cross-check fails, then the approach operation should not be continued. - (2) This operational cross-check should not be necessary if the aircraft systems automatically compare the altitudes to within 75 ft. #### (m) Missed approach operation Where possible, the missed approach operation should necessitate RNP 1.0. The missed approach portion of these procedures should be similar to a missed approach of an RNP APCH procedure. Where necessary, navigation accuracy less than RNP 1.0 may be used in the missed approach segment. - (1) In many aircraft, executing a missed approach activating take-off/go-around (TOGA) may cause a change in lateral navigation. In many aircraft, activating TOGA disengages the autopilot and flight director from LNAV guidance, and the flight director reverts to trackhold derived from the inertial system. LNAV guidance to the autopilot and flight director should be re-engaged as quickly as possible. - (2) Flight crew procedures and training should address the impact on navigation capability and flight guidance if the pilot initiates a missed approach while the aircraft is in a turn. When initiating an early missed approach operation, the flight crew should follow the rest of the approach track and missed approach track unless a different clearance has been issued by ATC. The flight crew should also be aware that RF legs are designed based on the maximum true airspeed at normal altitudes, and initiating an early missed approach operation will reduce the manoeuvrability margin and potentially even make holding the turn impractical at missed approach speeds. #### (n) Contingency procedures (1) Failure while en route The flight crew should be able to assess the impact of GNSS equipment failure on the anticipated RNP AR APCH operation and take appropriate action. (2) Failure on approach The operator's contingency procedures should address at least the following conditions: - failure of the area navigation system components, including those affecting lateral and vertical deviation performance (e.g. failures of a GPS sensor, the flight director or autopilot); - (ii) loss of navigation signal-in-space (loss or degradation of external signal). #### AMC3 BCAR.SPA.PBN.105 (d) PBN operational approval #### **NAVIGATION DATABASE MANAGEMENT** - (a) The operator should validate every RNP AR APCH procedure before using the procedure in instrument meteorological conditions (IMC) to ensure compatibility with their aircraft and to ensure the resulting path matches the published procedure. As a minimum, the operator should: - (1) compare the navigation data for the procedure(s) to be loaded into the FMS with the published procedure. - (2) validate the loaded navigation data for the procedure, either in an FSTD or in the actual aircraft in VMC. The depicted procedure on the map display should be compared to the published procedure. The entire procedure should be flown to ensure the path is flyable, does not have any apparent lateral or vertical path disconnects and is consistent with the published procedure. - (3) Once the procedure is validated, a copy of the validated navigation data should be retained for comparison with subsequent data updates. - (4) For published procedures, where FOSA demonstrated that the procedure is not in a challenging operational environment, the flight or FSTD validation may be credited from already validated equivalent RNP AR APCH procedures. - (b) If an aircraft system required for RNP AR APCH operations is modified, the operator should assess the need for a validation of the RNP AR APCH procedures with the navigation database and the modified system. This may be accomplished without any direct evaluation if the manufacturer verifies that the modification has no effect on the navigation database or path computation. If no such assurance from the manufacturer is available, the operator should conduct initial data validation with the modified system. - (c) The operator should implement procedures that ensure timely distribution and insertion of current and unaltered electronic navigation data to all aircraft that require it. #### AMC1 BCAR.SPA.PBN.105 (e) PBN operational approval #### **REPORTABLE EVENTS** The operator should report events which are listed in AMC2 ORO.GEN.160. #### AMC1 BCAR.SPA.PBN.105 (f) PBN operational approval #### RNP MONITORING PROGRAMME - (a) The operator approved to conduct RNP AR APCH operations, should have an RNP monitoring programme to ensure continued compliance with applicable rules and to identify any negative trends in performance. - (b) During an interim approval period, which should be at least 90 days, the operator should at least submit the following information every 30 days to the competent authority. - (1) Total number of RNP AR APCH operations conducted; - (2) Number of approach operations by aircraft/system which were completed as planned without any navigation or guidance system anomalies; - (3) Reasons for unsatisfactory approaches, such as: - (i) UNABLE REQ NAV PERF, NAV ACCUR DOWNGRAD, or other RNP messages during approaches; - (ii) excessive lateral or vertical deviation; - (iii) TAWS warning; - (iv) autopilot system disconnect; - (v) navigation data errors; or - (vi) flight crew reports of any anomaly; - (4) Flight crew comments. - (c) Thereafter, the operator should continue to collect and periodically review this data to identify potential safety concerns, and maintain summaries of this data. # SUBPARTC: OPERATIONS WITH SPECIFIED MINIMUM NAVIGATION PERFORMANCE (MNPS) Not applicable # SUBPART D: OPERATIONS IN AIRSPACE WITH REDUCED VERTICAL SEPARATION MINIMA (RVSM) ## BCAR.SPA.RVSM.100 RVSM operations Aircraft shall only be operated in designated airspace where a reduced vertical separation minimum of 300 m (1000 ft) applies between flight level (FL) 290 and FL 410, inclusive, if the operator has been granted an approval by the BCAA to conduct such operations. # BCAR.SPA.RVSM.105 RVSM operational approval To obtain an RVSM operational approval from the BCAA, the operator shall provide evidence that: - (a) the RVSM airworthiness approval has been obtained; - (b) procedures for monitoring and reporting height-keeping errors have been established; - (c) a training programme for the flight crew members involved in these operations has been established; - (d) operating procedures have been established specifying: - (1) the equipment to be carried, including its operating limitations and appropriate entries in the MEL; - (2) flight crew composition and experience requirements; - (3) flight planning; - (4) pre-flight procedures; - (5) procedures prior to RVSM airspace entry; - (6) in-flight procedures; - (7) post-flight procedures; - (8) incident reporting; - (9) specific regional operating procedures. #### AMC1 BCAR.SPA.RVSM.105 RVSM operational approval ## CONTENT OF OPERATOR RVSM APPLICATION The following material should be made available to the BCAA, in sufficient time to permit evaluation, before the intended start of RVSM operations: - (a) Airworthiness documents - Documentation that shows that the aircraft has RVSM airworthiness approval. This should include an aircraft flight manual (AFM) amendment or supplement. - (b) Description of aircraft equipment - A description of the aircraft appropriate to operations in an RVSM environment. (c) Training programmes, operating practices and procedures The operator should submit training syllabi for initial and recurrent training programmes together with other relevant material. The material should show that the operating practices, procedures and training items, related to RVSM operations in airspace that requires State operational approval, are incorporated. #### (d) Manuals and checklists The appropriate manuals and checklists should be revised to include information/guidance on standard operating procedures. Manuals should contain a statement of the airspeeds, altitudes and weights considered in RVSM aircraft approval, including identification of any operating limitations or conditions established for that aircraft type. Manuals and checklists may need to be submitted for review by the competent authority as part of the application process. ## (e) Past performance Relevant operating history, where available, should be included in the application. The applicant should show that any required changes have been made in training, operating or maintenance practices to improve poor height-keeping performance. (f) Minimum equipment list Where applicable, a minimum equipment list (MEL), adapted from the master minimum equipment list (MMEL), should include items pertinent to operating in RVSM airspace. (g) Plan for participation in verification/monitoring programmes The operator should establish a plan for participation in any applicable verification/monitoring programme acceptable to the competent authority.
This plan should include, as a minimum, a check on a sample of the operator's fleet by an regional monitoring agency (RMA)'s independent height-monitoring system. AMC2 BCAR.SPA.RVSM.105 RVSM operational approval # **OPERATING PROCEDURES** ## (a) Flight planning - (1) During flight planning the flight crew should pay particular attention to conditions that may affect operation in RVSM airspace. These include, but may not be limited to: - (i) verifying that the airframe is approved for RVSM operations; - (ii) reported and forecast weather on the route of flight; - (iii) minimum equipment requirements pertaining to height-keeping and alerting systems; and - (iv) any airframe or operating restriction related to RVSM operations. ## (b) Pre-flight procedures - (1) The following actions should be accomplished during the pre-flight procedure: - (i) Review technical logs and forms to determine the condition of equipment required for flight in the RVSM airspace. Ensure that maintenance action has been taken to correct defects to required equipment. - (ii) During the external inspection of aircraft, particular attention should be paid to the condition of static sources and the condition of the fuselage skin near each static - source and any other component that affects altimetry system accuracy. This check may be accomplished by a qualified and authorised person other than the pilot (e.g. a flight engineer or ground engineer). - (iii) Before take-off, the aircraft altimeters should be set to the QNH (atmospheric pressure at nautical height) of the airfield and should display a known altitude, within the limits specified in the aircraft operating manuals. The two primary altimeters should also agree within limits specified by the aircraft operating manual. An alternative procedure using QFE (atmospheric pressure at aerodrome elevation/runway threshold) may also be used. The maximum value of acceptable altimeter differences for these checks should not exceed 23 m (75 ft). Any required functioning checks of altitude indicating systems should be performed. - (iv) Before take-off, equipment required for flight in RVSM airspace should be operative and any indications of malfunction should be resolved. - (c) Prior to RVSM airspace entry - (1) The following equipment should be operating normally at entry into RVSM airspace: - two primary altitude measurement systems. A cross-check between the primary altimeters should be made. A minimum of two will need to agree within ±60 m (±200 ft). Failure to meet this condition will require that the altimetry system be reported as defective and air traffic control (ATC) notified; - (ii) one automatic altitude-control system; - (iii) one altitude-alerting device; and - (iv) operating transponder. - (2) Should any of the required equipment fail prior to the aircraft entering RVSM airspace, the pilot should request a new clearance to avoid entering this airspace. - (d) In-flight procedures - (1) The following practices should be incorporated into flight crew training and procedures: - (i) Flight crew should comply with any aircraft operating restrictions, if required for the specific aircraft type, e.g. limits on indicated Mach number, given in the RVSM airworthiness approval. - (ii) Emphasis should be placed on promptly setting the sub-scale on all primary and standby altimeters to 1013.2 hPa / 29.92 in Hg when passing the transition altitude, and rechecking for proper altimeter setting when reaching the initial cleared flight level. - (iii) In level cruise it is essential that the aircraft is flown at the cleared flight level. This requires that particular care is taken to ensure that ATC clearances are fully understood and followed. The aircraft should not intentionally depart from cleared flight level without a positive clearance from ATC unless the crew are conducting contingency or emergency manoeuvres. - (iv) When changing levels, the aircraft should not be allowed to overshoot or undershoot the cleared flight level by more than 45 m (150 ft). If installed, the level off should be accomplished using the altitude capture feature of the automatic altitude-control system. - (v) An automatic altitude-control system should be operative and engaged during level cruise, except when circumstances such as the need to re-trim the aircraft or turbulence require disengagement. In any event, adherence to cruise altitude should be done by reference to one of the two primary altimeters. Following loss of the automatic height-keeping function, any consequential restrictions will need to be observed. - (vi) Ensure that the altitude-alerting system is operative. - (vii) At intervals of approximately 1 hour, cross-checks between the primary altimeters should be made. A minimum of two will need to agree within ±60 m (±200 ft). Failure to meet this condition will require that the altimetry system be reported as defective and ATC notified or contingency procedures applied: - (A) the usual scan of flight deck instruments should suffice for altimeter crosschecking on most flights; and - (B) before entering RVSM airspace, the initial altimeter cross-check of primary and standby altimeters should be recorded. - (viii) In normal operations, the altimetry system being used to control the aircraft should be selected for the input to the altitude reporting transponder transmitting information to ATC. - (ix) If the pilot is notified by ATC of a deviation from an assigned altitude exceeding ±90 m (±300 ft) then the pilot should take action to return to cleared flight level as quickly as possible. - (2) Contingency procedures after entering RVSM airspace are as follows: - (i) The pilot should notify ATC of contingencies (equipment failures, weather) that affect the ability to maintain the cleared flight level and coordinate a plan of action appropriate to the airspace concerned. The pilot should obtain to the guidance on contingency procedures is contained in the relevant publications dealing with the airspace. - (ii) Examples of equipment failures that should be notified to ATC are: - (A) failure of all automatic altitude-control systems aboard the aircraft; - (B) loss of redundancy of altimetry systems; - (C) loss of thrust on an engine necessitating descent; or - (D) any other equipment failure affecting the ability to maintain cleared flight level. - (iii) The pilot should notify ATC when encountering greater than moderate turbulence. - (iv) If unable to notify ATC and obtain an ATC clearance prior to deviating from the cleared flight level, the pilot should follow any established contingency procedures for the region of operation and obtain ATC clearance as soon as possible. - (e) Post-flight procedures - (1) In making technical log entries against malfunctions in height-keeping systems, the pilot should provide sufficient detail to enable maintenance to effectively troubleshoot and repair the system. The pilot should detail the actual defect and the crew action taken to try to isolate and rectify the fault. - (2) The following information should be recorded when appropriate: - (i) primary and standby altimeter readings; - (ii) altitude selector setting; - (iii) subscale setting on altimeter; - (iv) autopilot used to control the aircraft and any differences when an alternative autopilot system was selected; - (v) differences in altimeter readings, if alternate static ports selected; - (vi) use of air data computer selector for fault diagnosis procedure; and - (vii) the transponder selected to provide altitude information to ATC and any difference noted when an alternative transponder was selected. #### (f) Crew training - (1) The following items should also be included in flight crew training programmes: - (i) knowledge and understanding of standard ATC phraseology used in each area of operations; - (ii) importance of crew members cross-checking to ensure that ATC clearances are promptly and correctly complied with; - (iii) use and limitations in terms of accuracy of standby altimeters in contingencies. Where applicable, the pilot should review the application of static source error correction/position error correction through the use of correction cards; such correction data should be available on the flight deck; - (iv) problems of visual perception of other aircraft at 300 m (1 000 ft) planned separation during darkness, when encountering local phenomena such as northern lights, for opposite and same direction traffic, and during turns; - (v) characteristics of aircraft altitude capture systems that may lead to overshoots; - (vi) relationship between the aircraft's altimetry, automatic altitude control and transponder systems in normal and abnormal conditions; and - (vii) any airframe operating restrictions, if required for the specific aircraft group, related to RVSM airworthiness approval ## AMC3 BCAR.SPA.RVSM.105 RVSM Operational approval # **CONTINUING AIRWORTHINESS** a) Maintenance programme The aircraft maintenance programme should include the instructions for continuing airworthiness issued by the type certificate holder in relation to the RVSM operations certification in accordance with AMC1 ACNS.A.GEN.010. b) Continuing airworthiness procedures The continuing airworthiness procedures should establish a process to: 1. assess any modification or design change which in any way affects the RVSM approval; - evaluate any repairs that may affect the integrity of the continuing RVSM approval, e.g. those affecting the alignment of pitot/static probes, repairs to dents, or deformation around static plates; - 3. ensure the proper maintenance of airframe geometry for proper surface contours and the mitigation of altimetry system error, surface measurements or skin waviness as specified in the instructions for continued airworthiness (ICA), to ensure adherence to RVSM tolerances. These checks should be performed following repairs or alterations having an effect on airframe surface and airflow. - c) Additional
training may be necessary for continuing airworthiness and maintenance staff to support RVSM approval. Areas that may need to be highlighted for the initial and recurrent training of relevant personnel are: - 1. Aircraft geometric inspection techniques; - 2. Test equipment calibration and use of that equipment; and - 3. Any special instructions or procedures introduced for RVSM approval. - d) Test equipment The operator should ensure that maintenance organisations use test equipment adequate for maintenance of the RVSM systems. The adequacy of the test equipment should be established in accordance with the type certificate holder recommendations and taking into consideration the required test equipment accuracy and the test equipment calibration. # GM1 BCAR.SPA.RVSM.105 (d)(9) RVSM operational approval #### **SPECIFIC REGIONAL PROCEDURES** - (a) The areas of applicability (by Flight Information Region) of RVSM airspace in identified ICAO regions is contained in the relevant sections of ICAO Document 7030/4. In addition, these sections contain operating and contingency procedures unique to the regional airspace concerned, specific flight planning requirements and the approval requirements for aircraft in the designated region. - (b) Comprehensive guidance on operational matters for European RVSM airspace is contained in EUROCONTROL Document ASM ET1.ST.5000 entitled "The ATC Manual for a Reduced Vertical Separation (RVSM) in Europe" with further material included in the relevant State aeronautical publications ## BCAR.SPA.RVSM.110 RVSM equipment requirements Aircraft used for operations in RVSM airspace shall be equipped with: - (a) two independent altitude measurement systems; - (b) an altitude alerting system; - (c) an automatic altitude control system; - (d) a secondary surveillance radar (SSR) transponder with altitude reporting system that can be connected to the altitude measurement system in use for altitude control. # AMC1 BCAR.SPA.RVSM.110 (a) RVSM equipment requirements #### TWO INDEPENDENT ALTITUDE MEASUREMENT SYSTEMS Each system should be composed of the following components: - (a) cross-coupled static source/system, with ice protection if located in areas subject to ice accretion; - (b) equipment for measuring static pressure sensed by the static source, converting it to pressure altitude and displaying the pressure altitude to the flight crew: - (c) equipment for providing a digitally encoded signal corresponding to the displayed pressure altitude, for automatic altitude reporting purposes; - (d) static source error correction (SSEC), if needed to meet the performance criteria for RVSM flight envelopes; and - (e) signals referenced to a flight crew selected altitude for automatic control and alerting. These signals will need to be derived from an altitude measurement system meeting the performance criteria for RVSM flight envelopes. # BCAR.SPA.RVSM.115 RVSM height-keeping errors - (a) The operator shall report recorded or communicated occurrences of height-keeping errors caused by malfunction of aircraft equipment or of operational nature, equal to or greater than: - (1) a total vertical error (TVE) of \pm 90 m (\pm 300 ft); - (2) an altimetry system error (ASE) of \pm 75 m (\pm 245 ft); and - (3) an assigned altitude deviation (AAD) of \pm 90 m (\pm 300 ft). - (b) Reports of such occurrences shall be sent to the BCAA within 72 hours. Reports shall include an initial analysis of causal factors and measures taken to prevent repeat occurrences. - (c) When height-keeping errors are recorded or received, the operator shall take immediate action to rectify the conditions that caused the errors and provide follow-up reports, if requested by the BCAA. # **SUBPART E: LOW VISIBILITY OPERATIONS (LVO)** # BCAR.SPA.LVO.100 Low Visibility Operations The operator shall only conduct the following low visibility operations (LVO) when approved by the BCAA: - (a) low visibility take-off (LVTO) operation; - (b) lower than standard category I (LTS CAT I) operation; - (c) standard category II (CAT II) operation; - (d) other than standard category II (OTS CAT II) operation; - (e) standard category III (CAT III) operation; - (f) approach operation utilising enhanced vision systems (EVS) for which an operational credit is applied to reduce the runway visual range (RVR) minima by no more than one third of the published RVR. # AMC1 BCAR.SPA.LVO.100 Low visibility operations #### **LVTO OPERATIONS- AEROPLANES** For a low visibility take-off (LVTO) with an aeroplane the following provisions should apply: - (a) for an LVTO with a runway visual range (RVR) below 400 m the criteria specified in Table 1.A; - (b) for an LVTO with an RVR below 150 m but not less than 125 m: - (1) high intensity runway centre line lights spaced 15 m or less apart and high intensity edge lights spaced 60 m or less apart that are in operation; - (2) a 90 m visual segment that is available from the flight crew compartment at the start of the take-off run; and - (3) the required RVR value is achieved for all of the relevant RVR reporting points; - (c) for an LVTO with an RVR below 125 m but not less than 75 m: - (1) runway protection and facilities equivalent to CAT III landing operations are available; and - (2) the aircraft is equipped with an approved lateral guidance system. ## Table 1.A: LVTO – aeroplanes ## **RVR vs. facilities** | Facilities | RVR (m) *, ** | |---|--------------------------| | Day: runway edge lights and runway centre line markings | 300 | | Night: runway edge lights and runway end lights or runway centre line lights and runway end lights | | | Runway edge lights and runway centre line lights | 200 | | Runway edge lights and runway centre line lights | TDZ, MID, rollout 150*** | | High intensity runway centre line lights spaced 15 m or less and high intensity edge lights spaced 60 m or less are in operation | TDZ, MID, rollout 125*** | | Runway protection and facilities equivalent to CAT III landing operations are available and the aircraft is equipped either with an approved lateral guidance system or an approved HUD / HUDLS for take-off. | TDZ, MID, rollout 75 | - *: The reported RVR value representative of the initial part of the take-off run can be replaced by pilot assessment. - **: Multi-engined aeroplanes that in the event of an engine failure at any point during take-off can either stop or continue the take-off to a height of 1 500 ft above the aerodrome while clearing obstacles by the required margins. - ***: The required RVR value to be achieved for all relevant RVRs TDZ: touchdown zone, equivalent to the initial part of the take-off run MID: midpoint # AMC2 BCAR.SPA.LVO.100 Low visibility operations # LVTO OPERATIONS - HELICOPTERS Not applicable ## AMC3 BCAR.SPA.LVO.100 Low visibility operations # LTS CAT I OPERATIONS - (a) For lower than Standard Category I (LTS CAT I) operations the following provisions should apply: - (1) The decision height (DH) of an LTS CAT I operation should not be lower than the highest of: - (i) the minimum DH specified in the AFM, if stated; - (ii) the minimum height to which the precision approach aid can be used without the specified visual reference; - (iii) the applicable obstacle clearance height (OCH) for the category of aeroplane; - (iv) the DH to which the flight crew is qualified to operate; or - (v) 200 ft. - (2) An instrument landing system / microwave landing system (ILS/MLS) that supports an LTS CAT I operation should be an unrestricted facility with a straight-in course, ≤ 3º offset, and the ILS should be certified to: - (i) class I/T/1 for operations to a minimum of 450 m RVR; or - (ii) class II/D/2 for operations to less than 450 m RVR.Single ILS facilities are only acceptable if level 2 performance is provided. - (3) The following visual aids should be available: - (i) standard runway day markings, approach lights, runway edge lights, threshold lights and runway end lights; - (ii) for operations with an RVR below 450 m, additionally touch-down zone and/or runway centre line lights. - (4) The lowest RVR / converted meteorological visibility (CMV) minima to be used are specified in Table 2. # **Table 2: LTS CAT I operation minima** # RVR/CMV vs. approach lighting system | DH (ft) | Class of light facility * | | | | |-----------|---------------------------|------|------|-------| | | FALS | IALS | BALS | NALS | | | RVR/CMV (m) | | | | | 200 – 210 | 400 | 500 | 600 | 750 | | 211 – 220 | 450 | 550 | 650 | 800 | | 221 – 230 | 500 | 600 | 700 | 900 | | 231 – 240 | 500 | 650 | 750 | 1 000 | | 241 – 249 | 550 | 700 | 800 | 1 100 | *: FALS: full approach lighting system IALS: intermediate approach lighting system BALS: basic approach lighting system NALS: no approach lighting system AMC4 BCAR.SPA.LVO.100 Low visibility operations #### **CAT II AND OTS CAT II OPERATIONS** - (a) For CAT II and other than Standard Category II (OTS CAT II) operations the following provisions should apply: - (1) The ILS / MLS that supports OTS CAT II operation should be an unrestricted facility with a straight in course (≤ 3º offset) and the ILS should be certified to class II/D/2. - Single ILS facilities are only acceptable if level 2 performance is provided. - (2) The DH for CAT II and OTS CAT II operation should not be lower than the highest of: - (i) the minimum DH specified in the AFM, if stated; - (ii) the minimum height to which the precision approach aid can be used without the specified visual reference; - (iii) the applicable OCH for the category of aeroplane; - (iv) the DH to which the flight crew is qualified to operate; or - (v) 100 ft. - (3) The following visual aids should be available: - (i) standard runway day markings and approach and the following runway lights: runway
edge lights, threshold lights and runway end lights; - (ii) for operations in RVR below 450 m, additionally touch-down zone and/or runway centre line lights; - (iii) for operations with an RVR of 400 m or less, additionally centre line lights. - (4) The lowest RVR minima to be used are specified: - (i) for CAT II operations in Table 3; and - (ii) for OTS CAT II operations in Table 4. - (b) For OTS CAT II operations, the terrain ahead of the runway threshold should have been surveyed. Table 3: CAT II operation minima RVR vs. DH | DH (ft) | Auto-coupled or approved HUDLS to below DH * | | | | | |-----------|--|--------------------------------|--|--|--| | | Aircraft categories A, B, C RVR (m) | Aircraft category D
RVR (m) | | | | | 100 – 120 | 300 | 300/350** | | | | | 121 – 140 | 400 | 400 | | | | | 141 – 199 | 450 | 450 | | | | ^{*:} This means continued use of the automatic flight control system or the HUDLS down to a height of 80 % of the DH. ^{**:} An RVR of 300 m may be used for a category D aircraft conducting an auto-land. Table 4: OTS CAT II operation minima RVR vs. approach lighting system | | Auto-land or approved HUDLS utilised to touchdown | | | | | |-----------|---|------------------------|---------------------------------|---------------------------------|------------------------------| | | Class of light facility | | | | | | | FALS IALS BALS NALS | | | | | | | Aircraft
categories A – C | Aircraft
category D | Aircraft
categories A –
D | Aircraft
categories A –
D | Aircraft
categories A - D | | DH (ft) | RVR (m) | | | | | | 100 - 120 | 350 | 400 | 450 | 600 | 700 | | 121 - 140 | 400 | 450 | 500 | 600 | 700 | | 141 - 160 | 400 | 500 | 500 | 600 | 750 | | 161 - 199 | 400 | 500 | 550 | 650 | 750 | ## AMC5 BCAR.SPA.LVO.100 Low visibility operations #### **CAT III OPERATIONS** The following provisions should apply to CAT III operations: - (a) Where the DH and RVR do not fall within the same category, the RVR should determine in which category the operation is to be considered. - (b) For operations in which a DH is used, the DH should not be lower than: - (1) the minimum DH specified in the AFM, if stated; - (2) the minimum height to which the precision approach aid can be used without the specified visual reference; or - (3) the DH to which the flight crew is qualified to operate. - (c) Operations with no DH should only be conducted if: - (1) the operation with no DH is specified in the AFM; - (2) the approach aid and the aerodrome facilities can support operations with no DH; and - (3) the flight crew is qualified to operate with no DH. - (d) The lowest RVR minima to be used are specified in Table 5. # **Table 5: CAT III operations minima** # RVR vs. DH and rollout control/guidance system | CAT | DH (ft) * | Rollout control/guidance | RVR (m) | |-----|-----------|--------------------------|---------| | | | system | | | IIIA | Less than 100 | Not required | 200 | |------|--------------------------|----------------------|-------| | IIIB | Less than 100 | Fail-passive | 150** | | IIIB | Less than 50 | Fail-passive | 125 | | IIIB | Less than 50 or
no DH | Fail-operational *** | 75 | - *: Flight control system redundancy is determined under CS-AWO by the minimum certified DH. - **: For aeroplanes certified in accordance with CS-AWO 321(b)(3) or equivalent. - ***: The fail-operational system referred to may consist of a fail-operational hybrid system. # AMC6 BCAR.SPA.LVO.100 Low visibility operations #### **OPERATIONS UTILISING EVS** The pilot using a certified enhanced vision system (EVS) in accordance with the procedures and limitations of the AFM: - (a) may reduce the RVR/CMV value in column 1 to the value in column 2 of Table 6 for CAT I operations, APV operations and NPA operations flown with the CDFA technique; - (b) for CAT I operations: - (1) may continue an approach below DH to 100 ft above the runway threshold elevation provided that a visual reference is displayed and identifiable on the EVS image; and - (2) should only continue an approach below 100 ft above the runway threshold elevation provided that a visual reference is distinctly visible and identifiable to the pilot without reliance on the EVS; - (c) for APV operations and NPA operations flown with the CDFA technique: - (1) may continue an approach below DH/MDH to 200 ft above the runway threshold elevation provided that a visual reference is displayed and identifiable on the EVS image; and - (2) should only continue an approach below 200 ft above the runway threshold elevation provided that a visual reference is distinctly visible and identifiable to the pilot without reliance on the EVS. Table 6: Operations utilising EVS RVR/CMV reduction vs. normal RVR/CMV | RVR/CMV (m)
normally required | RVR/CMV (m)
utilising EVS | |----------------------------------|------------------------------| | 550 | 350 | | 600 | 400 | | 650 | 450 | | 700 | 450 | | 750 | 500 | | 800 | 550 | |----------|-------| | 900 | 600 | | 1 000 | 650 | | 1 100 | 750 | | 1 200 | 800 | | 1 300 | 900 | | 1 400 | 900 | | 1 500 | 1 000 | | 1 600 | 1 100 | | 1 700 | 1 100 | | 1 800 | 1 200 | | 1 900 | 1 300 | | 2 000 | 1 300 | | 2 100 | 1 400 | | 2 200 | 1 500 | | 2 300 | 1 500 | | 2 400 | 1 600 | | 2 500 | 1 700 | | 2 600 | 1 700 | | 2 700 | 1 800 | | 2 800 | 1 900 | | 2 900 | 1 900 | | 3 000 | 2 000 | | 3 100 | 2 000 | | 3 200 | 2 100 | | 3 300 | 2 200 | | 3 400 | 2 200 | | 3 500 | 2 300 | | 3 600 | 2 400 | | 3 700 | 2 400 | | 3 800 | 2 500 | | 3 900 | 2 600 | | 4 000 | 2 600 | | 4 100 | 2 700 | | <u> </u> | 1 | | 4 200 | 2 800 | |-------|-------| | 4 300 | 2 800 | | 4 400 | 2 900 | | 4 500 | 3 000 | | 4 600 | 3 000 | | 4 700 | 3 100 | | 4 800 | 3 200 | | 4 900 | 3 200 | | 5 000 | 3 300 | AMC7 BCAR.SPA.LVO.100 Low visibility operations #### EFFECT ON LANDING MINIMA OF TEMPORARILY FAILED OR DOWNGRADED EQUIPMENT #### (a) General These instructions are intended for use both pre-flight and in-flight. It is however not expected that the pilot-in-command/commander would consult such instructions after passing 1 000 ft above the aerodrome. If failures of ground aids are announced at such a late stage, the approach could be continued at the pilot-in-command/commander's discretion. If failures are announced before such a late stage in the approach, their effect on the approach should be considered as described in Table 7, and the approach may have to be abandoned. - (b) The following conditions should be applicable to the tables below: - (1) multiple failures of runway/FATO lights other than indicated in Table 7 are not acceptable; - (2) deficiencies of approach and runway/FATO lights are treated separately; - (3) for CAT II and CAT III operations, a combination of deficiencies in runway/FATO lights and RVR assessment equipment are not permitted; and - (4) failures other than ILS and MLS affect RVR only and not DH. Table 7: Failed or downgraded equipment – affect on landing minima Operations with an LVO approval | Failed or downgraded | Effect on landing minin | | | | | |---|---|---|---------------------------------------|--|--| | equipment | CAT IIIB (no DH) | | | CAT II | | | ILS/MLS stand-by | Graning (iio bii) | G/112 | G 211 III. | . | | | transmitter | Not allowed | RVR 200 m | | No effect | | | Outer marker | No effect if replace | No effect if replaced by height check at 1 000 ft | | | | | Middle marker | No effect | | | | | | RVR assessment systems | At least one RVR value to be available on the aerodrome | On runways equip | • | nore RVR assessment units, | | | | | Not allowed for operations with DH | | | | | Approach lights | No effect | >50 ft | >50 ft Not allowed | | | | Approach lights except the last 210 m | No effect | | | Not allowed | | | Approach lights except the last 420 m | No effect | | | | | | Standby power for approach lights | No effect | | | | | | | | | Day: no effect | Day: no effect | | | Edge lights, threshold lights and runway end lights | No effect | | Night: RVR
550 m | Night: not allowed | | | , 0 | Day: RVR 200 m | | Day: RVR 300 m | Day: RVR 350 m | | | Centre line lights | Night: not allowed | Not allowed | Night: RVR
400 m | Night: RVR 550 m (400 m with HUDLS or auto-land) | | | Centre line lights spacing increased to 30 m | RVR 150 m | | No effect | | | | | | Day: RVR 200 m | Day: RVR 300 m | | | | | | Night: RVR | Night: RVR 550 m, 350 m with HUDLS or | | | | Touchdown zone lights | No effect | 300 m | auto-land | | | | Taxiway light system | No effect | | | | | ## GM1 BCAR.SPA.LVO.100 Low visibility operations #### **DOCUMENTS CONTAINING INFORMATION RELATED TO LOW VISIBILITY OPERATIONS** The following documents provide further information to low visibility operations (LVO): - (a) ICAO Annex 2 Rules of the Air; - (b) ICAO Annex 6 Operation of Aircraft; - (c) ICAO Annex 10 Telecommunications Vol. 1; - (d) ICAO Annex 14 Aerodromes Vol. 1; - (e) ICAO Doc 8168 PANS OPS Aircraft Operations; - (f) ICAO Doc 9365 AWO Manual; - (g) ICAO Doc 9476 Manual of surface movement guidance and control systems (SMGCS); - (h) ICAO Doc 9157 Aerodrome Design Manual; - (i) ICAO Doc 9328 Manual of RVR Observing and Reporting Practices; - (j) ICAO EUR Doc 013: European Guidance Material on Aerodrome Operations under Limited Visibility Conditions; - (k) ECAC Doc 17, Issue 3; and - (I) CS-AWO All weather operations. ## GM2 BCAR.SPA.LVO.100 Low visibility operations #### ILS CLASSIFICATION The ILS classification system is specified in ICAO Annex 10. ## GM1 BCAR.SPA.LVO.100(c),(e) Low visibility operations ## **ESTABLISHMENT OF MINIMUM RVR FOR CAT II AND CAT III OPERATIONS** - (a) General - (1) When establishing minimum RVR for CAT II
and CAT III operations, operators should pay attention to the following information that originates in ECAC Doc 17 3rdEdition, Subpart A. It is retained as background information and, to some extent, for historical purposes although there may be some conflict with current practices. - (2) Since the inception of precision approach and landing operations various methods have been devised for the calculation of aerodrome operating minima in terms of DH and RVR. It is a comparatively straightforward matter to establish the DH for an operation but establishing the minimum RVR to be associated with that DH so as to provide a high probability that the required visual reference will be available at that DH has been more of a problem. - (3) The methods adopted by various States to resolve the DH/RVR relationship in respect of CAT II and CAT III operations have varied considerably. In one instance there has been a simple approach that entailed the application of empirical data based on actual operating experience in a particular environment. This has given satisfactory results for application within the environment for which it was developed. In another instance a more sophisticated method was employed which utilised a fairly complex computer programme to take account of a wide range of variables. However, in the latter case, it has been found that with the improvement in the performance of visual aids, and the increased use of automatic equipment in the many different types of new aircraft, most of the variables cancel each other out and a simple tabulation can be constructed that is applicable to a wide range of aircraft. The basic principles that are observed in establishing the values in such a table are that the scale of visual reference required by a pilot at and below DH depends on the task that he/she has to carry out, and that the degree to which his/her vision is obscured depends on the obscuring medium, the general rule in fog being that it becomes more dense with increase in height. Research using flight simulation training devices (FSTDs) coupled with flight trials has shown the following: - most pilots require visual contact to be established about 3 seconds above DH though it has been observed that this reduces to about 1 second when a failoperational automatic landing system is being used; - (ii) to establish lateral position and cross-track velocity most pilots need to see not less than a three light segment of the centre line of the approach lights, or runway centre line, or runway edge lights; - (iii) for roll guidance most pilots need to see a lateral element of the ground pattern, i.e. an approach light cross bar, the landing threshold, or a barrette of the touchdown zone light; and - (iv) to make an accurate adjustment to the flight path in the vertical plane, such as a flare, using purely visual cues, most pilots need to see a point on the ground which has a low or zero rate of apparent movement relative to the aircraft. - (v) With regard to fog structure, data gathered in the United Kingdom over a 20 year period have shown that in deep stable fog there is a 90 % probability that the slant visual range from eye heights higher than 15 ft above the ground will be less than the horizontal visibility at ground level, i.e. RVR. There are at present no data available to show what the relationship is between the slant visual range and RVR in other low visibility conditions such as blowing snow, dust or heavy rain, but there is some evidence in pilot reports that the lack of contrast between visual aids and the background in such conditions can produce a relationship similar to that observed in fog. ## (b) CAT II operations The selection of the dimensions of the required visual segments that are used for CAT II operations is based on the following visual provisions: - (1) a visual segment of not less than 90 m will need to be in view at and below DH for pilot to be able to monitor an automatic system; - (2) a visual segment of not less than 120 m will need to be in view for a pilot to be able to maintain the roll attitude manually at and below DH; and - (3) for a manual landing using only external visual cues, a visual segment of 225 m will be required at the height at which flare initiation starts in order to provide the pilot with sight of a point of low relative movement on the ground. Before using a CAT II ILS for landing, the quality of the localiser between 50 ft and touchdown should be verified. # (c) CAT III fail-passive operations - (1) CAT III operations utilising fail-passive automatic landing equipment were introduced in the late 1960s and it is desirable that the principles governing the establishment of the minimum RVR for such operations be dealt with in some detail. - (2) During an automatic landing the pilot needs to monitor the performance of the aircraft system, not in order to detect a failure that is better done by the monitoring devices built into the system, but so as to know precisely the flight situation. In the final stages the pilot should establish visual contact and, by the time the pilot reaches DH, the pilot should have checked the aircraft position relative to the approach or runway centre line lights. For this the pilot will need sight of horizontal elements (for roll reference) and part of the touchdown area. The pilot should check for lateral position and cross-track velocity and, if not within the pre-stated lateral limits, the pilot should carry out a missed approach procedure. The pilot should also check longitudinal progress and sight of the landing threshold is useful for this purpose, as is sight of the touchdown zone lights. - (3) In the event of a failure of the automatic flight guidance system below DH, there are two possible courses of action; the first is a procedure that allows the pilot to complete the landing manually if there is adequate visual reference for him/her to do so, or to initiate a missed approach procedure if there is not; the second is to make a missed approach procedure mandatory if there is a system disconnect regardless of the pilot's assessment of the visual reference available: - (i) If the first option is selected then the overriding rule in the determination of a minimum RVR is for sufficient visual cues to be available at and below DH for the pilot to be able to carry out a manual landing. Data presented in ECAC Doc 17 showed that a minimum value of 300 m would give a high probability that the cues needed by the pilot to assess the aircraft in pitch and roll will be available and this should be the minimum RVR for this procedure. - (ii) The second option, to require a missed approach procedure to be carried out should the automatic flight-guidance system fail below DH, will permit a lower minimum RVR because the visual reference provision will be less if there is no need to provide for the possibility of a manual landing. However, this option is only acceptable if it can be shown that the probability of a system failure below DH is acceptably low. It should be recognised that the inclination of a pilot who experiences such a failure would be to continue the landing manually but the results of flight trials in actual conditions and of simulator experiments show that pilots do not always recognise that the visual cues are inadequate in such situations and present recorded data reveal that pilots' landing performance reduces progressively as the RVR is reduced below 300 m. It should further be recognised that there is some risk in carrying out a manual missed approach procedure from below 50 ft in very low visibility and it should therefore be accepted that if an RVR lower than 300 m is to be approved, the flight deck procedure should not normally allow the pilot to continue the landing manually in such conditions and the aircraft system should be sufficiently reliable for the missed approach procedure rate to be low. - (4) These criteria may be relaxed in the case of an aircraft with a fail-passive automatic landing system that is supplemented by a head-up display that does not qualify as a fail- operational system but that gives guidance that will enable the pilot to complete a landing in the event of a failure of the automatic landing system. In this case it is not necessary to make a missed approach procedure mandatory in the event of a failure of the automatic landing system when the RVR is less than 300 m. - (d) CAT III fail-operational operations with a DH - (1) For CAT III operations utilising a fail-operational landing system with a DH, a pilot should be able to see at least one centre line light. - (2) For CAT III operations utilising a fail-operational hybrid landing system with a DH, a pilot should have a visual reference containing a segment of at least three consecutive lights of the runway centre line lights. - (e) CAT III fail operational operations with no DH - (1) For CAT III operations with no DH the pilot is not required to see the runway prior to touchdown. The permitted RVR is dependent on the level of aircraft equipment. - (2) A CAT III runway may be assumed to support operations with no DH unless specifically restricted as published in the AIP or NOTAM. # GM1 BCAR.SPA.LVO.100 (e) Low visibility operations ## CREW ACTIONS IN CASE OF AUTOPILOT FAILURE AT OR BELOW DH IN FAIL-PASSIVE CAT III OPERATIONS For operations to actual RVR values less than 300 m, a missed approach procedure is assumed in the event of an autopilot failure at or below DH. This means that a missed approach procedure is the normal action. However, the wording recognises that there may be circumstances where the safest action is to continue the landing. Such circumstances include the height at which the failure occurs, the actual visual references, and other malfunctions. This would typically apply to the late stages of the flare. In conclusion, it is not forbidden to continue the approach and complete the landing when the
pilot-in-command/commander determines that this is the safest course of action. The operator's policy and the operational instructions should reflect this information. # GM1 BCAR.SPA.LVO.100 (f) Low visibility operations #### **OPERATIONS UTILISING EVS** - (a) Introduction - (1) Enhanced vision systems use sensing technology to improve a pilot's ability to detect objects, such as runway lights or terrain, which may otherwise not be visible. The image produced from the sensor and/or image processor can be displayed to the pilot in a number of ways including use of a HUD. The systems can be used in all phases of flight and can improve situational awareness. In particular, infra-red systems can display terrain during operations at night, improve situational awareness during night and low-visibility taxiing, and may allow earlier acquisition of visual references during instrument approaches. - (b) Background to EVS provisions - (1) The provisions for EVS were developed after an operational evaluation of two different EVS systems, along with data and support provided by the FAA. Approaches using EVS were flown in a variety of conditions including fog, rain and snow showers, as well as at night to aerodromes located in mountainous terrain. The infra-red EVS performance can vary depending on the weather conditions encountered. Therefore, the provisions take a - conservative approach to cater for the wide variety of conditions which may be encountered. It may be necessary to amend the provisions in the future to take account of greater operational experience. - (2) Provisions for the use of EVS during take-off have not been developed. The systems evaluated did not perform well when the RVR was below 300 m. There may be some benefit for use of EVS during take-off with greater visibility and reduced light; however, such operations would need to be evaluated. - (3) Provisions have been developed to cover use of infra-red systems only. Other sensing technologies are not intended to be excluded; however, their use will need to be evaluated to determine the appropriateness of this, or any other provision. During the development, it was envisaged what minimum equipment should be fitted to the aircraft. Given the present state of technological development, it is considered that a HUD is an essential element of the EVS equipment. - (4) In order to avoid the need for tailored charts for approaches utilising EVS, it is envisaged that the operator will use AMC6 BCAR.SPA.LVO.110 Table 6 Operations utilising EVS RVR/CMV reduction vs. normal RVR/CMV to determine the applicable RVR at the commencement of the approach. - (c) Additional operational considerations - (1) EVS equipment should have: - a head-up display system (capable of displaying, airspeed, vertical speed, aircraft attitude, heading, altitude, command guidance as appropriate for the approach to be flown, path deviation indications, flight path vector and flight path angle reference cue and the EVS imagery); - (ii) a head-down view of the EVS image, or other means of displaying the EVS-derived information easily to the pilot monitoring the progress of the approach; and - (iii) means to ensure that the pilot monitoring is kept in the 'loop' and crew resource management (CRM) does not break down. # BCAR.SPA.LVO.105 LVO approval To obtain an LVO approval from the BCAA, the operator shall demonstrate compliance with the requirements of this Subpart. # AMC1 BCAR.SPA.LVO.105 LVO approval #### **OPERATIONAL DEMONSTRATION – AEROPLANES** - (a) General - (1) The purpose of the operational demonstration should be to determine or validate the use and effectiveness of the applicable aircraft flight guidance systems, including HUDLS if appropriate, training, flight crew procedures, maintenance programme, and manuals applicable to the CAT II/III programme being approved. - (i) At least 30 approaches and landings should be accomplished in operations using the CAT II/III systems installed in each aircraft type if the requested DH is 50 ft or higher. If the DH is less than 50 ft, at least 100 approaches and landings should be accomplished. - (ii) If the operator has different variants of the same type of aircraft utilising the same basic flight control and display systems, or different basic flight control and display systems on the same type of aircraft, the operator should show that the various variants have satisfactory performance, but need not conduct a full operational demonstration for each variant. The number of approaches and landings may be based on credit given for the experience gained by another operator, using the same aeroplane type or variant and procedures. - (iii) If the number of unsuccessful approaches exceeds 5 % of the total, e.g. unsatisfactory landings, system disconnects, the evaluation programme should be extended in steps of at least 10 approaches and landings until the overall failure rate does not exceed 5 %. - (2) The operator should establish a data collection method to record approach and landing performance. The resulting data and a summary of the demonstration data should be made available to the competent authority for evaluation. - (3) Unsatisfactory approaches and/or automatic landings should be documented and analysed. ## (b) Demonstrations - (1) Demonstrations may be conducted in line operations or any other flight where the operator's procedures are being used. - (2) In unique situations where the completion of 100 successful landings could take an unreasonably long period of time and equivalent reliability assurance can be achieved, a reduction in the required number of landings may be considered on a case-by-case basis. Reduction of the number of landings to be demonstrated requires a justification for the reduction. This justification should take into account factors such as a small number of aircraft in the fleet, limited opportunity to use runways having CAT II/III procedures or the inability to obtain ATS sensitive area protection during good weather conditions. However, at the operator's option, demonstrations may be made on other runways and facilities. Sufficient information should be collected to determine the cause of any unsatisfactory performance (e.g. sensitive area was not protected). - (3) If the operator has different variants of the same type of aircraft utilising the same basic flight control and display systems, or different basic flight control and display systems on the same type or class of aircraft, the operator should show that the various variants have satisfactory performance, but need not conduct a full operational demonstration for each variant. - (4) Not more than 30 % of the demonstration flights should be made on the same runway. - (c) Data collection for operational demonstrations - (1) Data should be collected whenever an approach and landing is attempted utilising the CAT II/III system, regardless of whether the approach is abandoned, unsatisfactory, or is concluded successfully. - (2) The data should, as a minimum, include the following information: - (i) Inability to initiate an approach. Identify deficiencies related to airborne equipment that preclude initiation of a CAT II/III approach. - (ii) Abandoned approaches. Give the reasons and altitude above the runway at which approach was discontinued or the automatic landing system was disengaged. (iii) Touchdown or touchdown and rollout performance. Describe whether or not the aircraft landed satisfactorily within the desired touchdown area with lateral velocity or cross track error that could be corrected by the pilot or automatic system so as to remain within the lateral confines of the runway without unusual pilot skill or technique. The approximate lateral and longitudinal position of the actual touchdown point in relation to the runway centre line and the runway threshold, respectively, should be indicated in the report. This report should also include any CAT II/III system abnormalities that required manual intervention by the pilot to ensure a safe touchdown or touchdown and rollout, as appropriate. ## (d) Data analysis Unsuccessful approaches due to the following factors may be excluded from the analysis: - (1) ATS factors. Examples include situations in which a flight is vectored too close to the final approach fix/point for adequate localiser and glide slope capture, lack of protection of ILS sensitive areas, or ATS requests the flight to discontinue the approach. - (2) Faulty navaid signals. Navaid (e.g. ILS localiser) irregularities, such as those caused by other aircraft taxiing, over-flying the navaid (antenna). - (3) Other factors. Any other specific factors that could affect the success of CAT II/ III operations that are clearly discernible to the flight crew should be reported. ## AMC2 BCAR.SPA.LVO.105 LVO approval ## **OPERATIONAL DEMONSTRATION – HELICOPTERS** Not applicable # AMC3 BCAR.SPA.LVO.105 LVO approval #### **CONTINUOUS MONITORING – ALL AIRCRAFT** - (a) After obtaining the initial approval, the operations should be continuously monitored by the operator to detect any undesirable trends before they become hazardous. Flight crew reports may be used to achieve this. - (b) The following information should be retained for a period of 12 months: - (1) the total number of approaches, by aircraft type, where the airborne CAT II or III equipment was utilised to make satisfactory, actual or practice, approaches to the applicable CAT II or III minima; and - (2) reports of unsatisfactory approaches and/or automatic landings, by aerodrome and aircraft registration, in the following categories: - (i) airborne equipment faults; - (ii) ground facility difficulties; - (iii) missed approaches because of ATC instructions; or - (iv) other reasons. - (c) The operator should establish a procedure to monitor the performance of the automatic landing system or HUDLS to touchdown performance, as appropriate, of each aircraft. ## AMC4 BCAR.SPA.LVO.105 LVO
approval #### TRANSITIONAL PERIODS FOR CAT II AND CAT III OPERATIONS - (a) Operators with no previous CAT II or CAT III experience - (1) The operator without previous CAT II or III operational experience, applying for a CAT II or CAT IIIA operational approval, should demonstrate to the competent authority that it has gained a minimum experience of 6 months of CAT I operations on the aircraft type. - (2) The operator applying for a CAT IIIB operational approval should demonstrate to the competent authority that it has already completed 6 months of CAT II or IIIA operations on the aircraft type. - (b) Operators with previous CAT II or III experience - (1) The operator with previous CAT II or CAT III experience, applying for a CAT II or CAT III operational approval with reduced transition periods as set out in (a), should demonstrate to the competent authority that it has maintained the experience previously gained on the aircraft type. - (2) The operator approved for CAT II or III operations using auto-coupled approach procedures, with or without auto-land, and subsequently introducing manually flown CAT II or III operations using a HUDLS should provide the operational demonstrations set out in AMC1 BCAR.SPA.LVO.105 and AMC2 BCAR.SPA.LVO.105 as if it would be a new applicant for a CAT II or CAT III approval. # AMC5 BCAR.SPA.LVO.105 LVO approval #### MAINTENANCE OF CAT II, CAT III AND LVTO EQUIPMENT Maintenance instructions for the on-board guidance systems should be established by the operator, in liaison with the manufacturer, and included in the operator's aircraft maintenance programme in accordance with Annex I to Regulation (EC) No 2042/2003¹ (Part-M). # AMC6 BCAR.SPA.LVO.105 LVO approval #### **ELIGIBLE AERODROMES AND RUNWAYS** - (a) Each aircraft type/runway combination should be verified by the successful completion of at least one approach and landing in CAT II or better conditions, prior to commencing CAT III operations. - (b) For runways with irregular pre-threshold terrain or other foreseeable or known deficiencies, each aircraft type/runway combination should be verified by operations in CAT I or better conditions, prior to commencing LTS CAT I, OTS CAT II or CAT III operations. - (c) If the operator has different variants of the same type of aircraft in accordance with (d), utilising the same basic flight control and display systems, or different basic flight control and display systems on the same type of aircraft in accordance with (d), the operator should show that the - variants have satisfactory operational performance, but need not conduct a full operational demonstration for each variant/runway combination. - (d) For the purpose of this AMC, an aircraft type or variant of an aircraft type should be deemed to be the same type/variant of aircraft if that type/variant has the same or similar: - (1) level of technology, including the following: - (i) flight control/guidance system (FGS) and associated displays and controls; - (ii) FMS and level of integration with the FGS; and - (iii) use of HUDLS; - (2) operational procedures, including: - (i) alert height; - (ii) manual landing /automatic landing; - (iii) no DH operations; and - (iv) use of HUD/HUDLS in hybrid operations; - (3) handling characteristics, including: - (i) manual landing from automatic or HUDLS guided approach; - (ii) manual missed approach procedure from automatic approach; and - (iii) automatic/manual rollout. - (e) Operators using the same aircraft type/class or variant of a type in accordance with (d) above may take credit from each other's experience and records in complying with this subparagraph. - (f) Where an approval is sought for OTS CAT II, the same provisions as set out for CAT II should be applied. ## GM1 BCAR.SPA.LVO.105 LVO approval #### CRITERIA FOR A SUCCESSFUL CAT II, OTS CAT II, CAT III APPROACH AND AUTOMATIC LANDING - (a) The purpose of this GM is to provide operators with supplemental information regarding the criteria for a successful approach and landing to facilitate fulfilling the requirements prescribed in BCAR.SPA.LVO.105. - (b) An approach may be considered to be successful if: - (1) from 500 ft to start of flare: - (i) speed is maintained as specified in AMC-AWO 231, paragraph 2 'Speed Control'; and - (ii) no relevant system failure occurs; and - (2) from 300 ft to DH: - (i) no excess deviation occurs; and - (ii) no centralised warning gives a missed approach procedure command (if installed). - (c) An automatic landing may be considered to be successful if: - (1) no relevant system failure occurs; - (2) no flare failure occurs; - (3) no de-crab failure occurs (if installed); - (4) longitudinal touchdown is beyond a point on the runway 60 m after the threshold and before the end of the touchdown zone light (900 m from the threshold); - (5) lateral touchdown with the outboard landing gear is not outside the touchdown zone light edge; - (6) sink rate is not excessive; - (7) bank angle does not exceed a bank angle limit; and - (8) no rollout failure or deviation (if installed) occurs. - (d) More details can be found in CS-AWO 131, CS-AWO 231 and AMC-AWO 231. # BCAR.SPA.LVO.110 General operating requirements - (a) The operator shall only conduct LTS CAT I operations if: - (1) each aircraft concerned is certified for operations to conduct CAT II operations; and - (2) the approach is flown: - (i) auto-coupled to an auto-land that needs to be approved for CAT IIIA operations; or - (ii) using an approved head-up display landing system (HUDLS) to at least 150 ft above the threshold. - (b) The operator shall only conduct CAT II, OTS CAT II or CAT III operations if: - (1) each aircraft concerned is certified for operations with a decision height (DH) below 200 ft, or no DH, and equipped in accordance with the applicable airworthiness requirements; - (2) a system for recording approach and/or automatic landing success and failure is established and maintained to monitor the overall safety of the operation; - (3) the DH is determined by means of a radio altimeter; - (4) the flight crew consists of at least two pilots; - (5) all height call-outs below 200 ft above the aerodrome threshold elevation are determined by a radio altimeter. - (c) The operator shall only conduct approach operations utilising an EVS if: - (1) the EVS is certified for the purpose of this Subpart and combines infra-red sensor image and flight information on the HUD; - (2) for operations with an RVR below 550 m, the flight crew consists of at least two pilots; - (3) for CAT I operations, natural visual reference to runway cues is attained at least at 100 ft above the aerodrome threshold elevation; - (4) for approach procedures with vertical guidance (APV) and non-precision approach (NPA) operations flown with CDFA technique, natural visual reference to runway cues is least at 200 ft above the aerodrome threshold elevation and the following requirements are complied with: - (i) the approach is flown using an approved vertical flight path guidance mode; - (ii) the approach segment from final approach fix (FAF) to runway threshold is straight and the difference between the final approach course and the runway centreline is not greater than 2°; - (iii) the final approach path is published and not greater than 3,7°; - (iv) the maximum cross-wind components established during certification of the EVS are not exceeded. # GM1 BCAR.SPA.LVO.110(c)(4)(i) General operating requirements #### APPROVED VERTICAL FLIGHT PATH GUIDANCE MODE The term 'approved' means that the vertical flight path guidance mode has been certified by the Agency as part of the avionics product. # BCAR.SPA.LVO.115 Aerodrome related requirements - (a) The operator shall not use an aerodrome for LVOs below a visibility of 800 m unless: - (1) the aerodrome has been approved for such operations by the State of the aerodrome; and - (2) low visibility procedures (LVP) have been established. - (b) If the operator selects an aerodrome where the term LVP is not used, the operator shall ensure that there are equivalent procedures that adhere to the requirements of LVP at the aerodrome. This situation shall be clearly noted in the operations manual or procedures manual including guidance to the flight crew on how to determine that the equivalent LVP are in effect. # BCAR.SPA.LVO.120 Flight crew training and qualifications The operator shall ensure that, prior to conducting an LVO: - (a) each flight crewmember: - (1) complies with the training and checking requirements prescribed in the operations manual, including flight simulation training device (FSTD) training, in operating to the limiting values of RVR/VIS (visibility) and DH specific to the operation and the aircraft type; - (2) is qualified in accordance with the standards prescribed in the operations manual; - (b) the training and checking is conducted in accordance with a detailed syllabus. ## AMC1 BCAR.SPA.LVO.120 Flight crew training and qualifications # **GENERAL PROVISIONS** - (a) The operator should ensure that flight crew member training programmes for LVO include structured courses of ground, FSTD and/or flight training. - (1) Flight crew members with no CAT II or CAT III experience should complete the full training programme prescribed in (b), (c), and (d) below. - (2) Flight crew members with CAT II or CAT III experience with a similar type of operation (auto-coupled/auto-land, HUDLS/hybrid HUDLS or EVS) or CAT II with manual land, if appropriate, with another EU operator may undertake an: - (i) abbreviated ground training course if operating a different type or class from that on which the previous CAT II or CAT III experience was gained; - (ii) abbreviated ground, FSTD and/or flight training course if operating the same type or class and variant of the same type or class on which the previous CAT II or CAT III experience was gained. The abbreviated course should include at least the provisions of (d)(1), (d)(2)(i) or
(d)(2)(ii) as appropriate and (d)(3)(i). The operator may reduce the number of approaches/landings required by (d)(2)(i) if the type/class or the variant of the type or class has the same or similar: - (A) level of technology flight control/guidance system (FGS); - (B) operating procedures; - (C) handling characteristics; - (D) use of HUDLS/hybrid HUDLS; and - (E) use of EVS, as the previously operated type or class, otherwise the provisions of (d)(2)(i) should be met. - (3) Flight crew members with CAT II or CAT III experience with the operator may undertake an abbreviated ground, FSTD and/or flight training course. - (i) When changing aircraft type or class, the abbreviated course should include at least the provisions of (d)(1), (d)(2)(i) or (d)(2)(ii) as appropriate and (d)(3)(i). - (ii) When changing to a different variant of aircraft within the same type or class rating that has the same or similar: - (A) level of technology FGS; - (B) operating procedures integrity; - (C) handling characteristics; - (D) use of HUDLS/Hybrid HUDLS; and - (E) use of EVS, as the previously operated type or class, a difference course or familiarisation appropriate to the change of variant should fulfil the abbreviated course provisions. - (iii) When changing to a different variant of aircraft within the same type or class rating that has a significantly different: - (A) level of technology FGS; - (B) operating procedures integrity; - (C) handling characteristics; - (D) use of HUDLS/Hybrid HUDLS; or - (E) use of EVS, the provisions of (d)(1), (d)(2)(i) or (d)(2)(ii) as appropriate and (d)(3)(i) should be fulfilled. - (4) The operator should ensure when undertaking CAT II or CAT III operations with different variant(s) of aircraft within the same type or class rating that the differences and/or similarities of the aircraft concerned justify such operations, taking into account at least the following: - (i) the level of technology, including the: - (A) FGS and associated displays and controls; - (B) FMS and its integration or not with the FGS; and - (C) use of HUD/HUDLS with hybrid systems and/or EVS; - (ii) operating procedures, including: - (A) fail-passive / fail-operational, alert height; - (B) manual landing / automatic landing; - (C) no DH operations; and - (D) use of HUD/HUDLS with hybrid systems; - (iii) handling characteristics, including: - (A) manual landing from automatic HUDLS and/or EVS guided approach; - (B) manual missed approach procedure from automatic approach; and - (C) automatic/manual rollout. # **GROUND TRAINING** - (b) The initial ground training course for LVO should include at least the following: - (1) characteristics and limitations of the ILS and/or MLS; - (2) characteristics of the visual aids; - (3) characteristics of fog; - (4) operational capabilities and limitations of the particular airborne system to include HUD symbology and EVS characteristics, if appropriate; - (5) effects of precipitation, ice accretion, low level wind shear and turbulence; - (6) effect of specific aircraft/system malfunctions; - (7) use and limitations of RVR assessment systems; - (8) principles of obstacle clearance requirements; - (9) recognition of and action to be taken in the event of failure of ground equipment; - (10) procedures and precautions to be followed with regard to surface movement during operations when the RVR is 400 m or less and any additional procedures required for take-off in conditions below 150 m (200 m for category D aeroplanes); - (11) significance of DHs based upon radio altimeters and the effect of terrain profile in the approach area on radio altimeter readings and on the automatic approach/landing systems; - (12) importance and significance of alert height, if applicable, and the action in the event of any failure above and below the alert height; - (13) qualification requirements for pilots to obtain and retain approval to conduct LVOs; and - (14) importance of correct seating and eye position. ## **FSTD TRAINING AND/OR FLIGHT TRAINING** - (c) FSTD training and/or flight training - (1) FSTD and/or flight training for LVO should include at least: - (i) checks of satisfactory functioning of equipment, both on the ground and in flight; - (ii) effect on minima caused by changes in the status of ground installations; - (iii) monitoring of: - (A) automatic flight control systems and auto-land status annunciators with emphasis on the action to be taken in the event of failures of such systems; and - (B) HUD/HUDLS/EVS guidance status and annunciators as appropriate, to include head-down displays; - (iv) actions to be taken in the event of failures such as engines, electrical systems, hydraulics or flight control systems; - (v) the effect of known serviceabilities and use of MELs; - (vi) operating limitations resulting from airworthiness certification; - (vii) guidance on the visual cues required at DH together with information on maximum deviation allowed from glide path or localiser; and - (viii) the importance and significance of alert height if applicable and the action in the event of any failure above and below the alert height. - (2) Flight crew members should be trained to carry out their duties and instructed on the coordination required with other crew members. Maximum use should be made of suitably equipped FSTDs for this purpose. - (3) Training should be divided into phases covering normal operation with no aircraft or equipment failures but including all weather conditions that may be encountered and detailed scenarios of aircraft and equipment failure that could affect CAT II or III operations. If the aircraft system involves the use of hybrid or other special systems, such as HUD/HUDLS or enhanced vision equipment, then flight crew members should practise the use of these systems in normal and abnormal modes during the FSTD phase of training. - (4) Incapacitation procedures appropriate to LVTO, CAT II and CAT III operations should be practised. - (5) For aircraft with no FSTD available to represent that specific aircraft, operators should ensure that the flight training phase specific to the visual scenarios of CAT II operations is conducted in a specifically approved FSTD. Such training should include a minimum of four approaches. Thereafter, the training and procedures that are type specific should be practised in the aircraft. - (6) Initial CAT II and III training should include at least the following exercises: - (i) approach using the appropriate flight guidance, autopilots and control systems installed in the aircraft, to the appropriate DH and to include transition to visual flight and landing; - (ii) approach with all engines operating using the appropriate flight guidance systems, autopilots, HUDLS and/or EVS and control systems installed in the aircraft down to the appropriate DH followed by missed approach - all without external visual reference; - (iii) where appropriate, approaches utilising automatic flight systems to provide automatic flare, hover, landing and rollout; and - (iv) normal operation of the applicable system both with and without acquisition of visual cues at DH. - (7) Subsequent phases of training should include at least: - (i) approaches with engine failure at various stages on the approach; - (ii) approaches with critical equipment failures, such as electrical systems, auto flight systems, ground and/or airborne ILS, MLS systems and status monitors; - (iii) approaches where failures of auto flight equipment and/or HUD/HUDLS/EVS at low level require either: - (A) reversion to manual flight to control flare, hover, landing and rollout or missed approach; or - (B) reversion to manual flight or a downgraded automatic mode to control missed approaches from, at or below DH including those which may result in a touchdown on the runway; - (iv) failures of the systems that will result in excessive localiser and/or glideslope deviation, both above and below DH, in the minimum visual conditions specified for the operation. In addition, a continuation to a manual landing should be practised if a head-up display forms a downgraded mode of the automatic system or the head-up display forms the only flare mode; and - (v) failures and procedures specific to aircraft type or variant. - (8) The training programme should provide practice in handling faults which require a reversion to higher minima. - (9) The training programme should include the handling of the aircraft when, during a fail-passive CAT III approach, the fault causes the autopilot to disconnect at or below DH when the last reported RVR is 300 m or less. - (10) Where take-offs are conducted in RVRs of 400 m and below, training should be established to cover systems failures and engine failure resulting in continued as well as rejected take-offs. - (11) The training programme should include, where appropriate, approaches where failures of the HUDLS and/or EVS equipment at low level require either: - (i) reversion to head down displays to control missed approach; or - (ii) reversion to flight with no, or downgraded, HUDLS guidance to control missed approaches from DH or below, including those which may result in a touchdown on the runway. (12) When undertaking LVTO, LTS CAT I, OTS CAT II, CAT II and CAT III operations utilising a HUD/HUDLS, hybrid HUD/HUDLS or an EVS, the training and checking programme should include, where appropriate, the use of the HUD/HUDLS in normal operations during all phases of flight. #### **CONVERSION TRAINING** - (d) Flight crew members should complete the following low visibility procedures (LVPs) training if converting to a new type or class or variant of aircraft in which LVTO, LTS CAT I, OTS CAT II, approach operations utilising EVS with an RVR of 800 m or less and CAT II and CAT III operations will be conducted. Conditions for abbreviated courses are prescribed in (a)(2), (a)(3) and (a)(4). - (1) Ground training The appropriate provisions are as prescribed in (b), taking
into account the flight crew member's CAT II and CAT III training and experience. - (2) FSTD training and/or flight training - (i) A minimum of six, respectively eight for HUDLS with or without EVS, approaches and/or landings in an FSTD. The provisions for eight HUDLS approaches may be reduced to six when conducting hybrid HUDLS operations. - (ii) Where no FSTD is available to represent that specific aircraft, a minimum of three, respectively five for HUDLS and/or EVS, approaches including at least one missed approach procedure is required on the aircraft. For hybrid HUDLS operations a minimum of three approaches is required, including at least one missed approach procedure. - (iii) Appropriate additional training if any special equipment is required such as headup displays or enhanced vision equipment. When approach operations utilising EVS are conducted with an RVR of less than 800 m, a minimum of five approaches, including at least one missed approach procedure are required on the aircraft. - (3) Flight crew qualification The flight crew qualification provisions are specific to the operator and the type of aircraft operated. - (i) The operator should ensure that each flight crew member completes a check before conducting CAT II or III operations. - (ii) The check specified in (d)(3)(i) may be replaced by successful completion of the FSTD and/or flight training specified in (d)(2). - (4) Line flying under supervision Flight crew member should undergo the following line flying under supervision (LIFUS): - (i) For CAT II when a manual landing or a HUDLS approach to touchdown is required, a minimum of: - (A) three landings from autopilot disconnect; and - (B) four landings with HUDLS used to touchdown, except that only one manual landing, respectively two using HUDLS, to touchdown is required when the training required in (d)(2) has been carried out in an FSTD qualified for zero flight time conversion. - (ii) For CAT III, a minimum of two auto-lands, except that: - (A) only one auto-land is required when the training required in (d)(2) has been carried out in an FSTD qualified for zero flight time conversion; - (B) no auto-land is required during LIFUS when the training required in (d)(2) has been carried out in an FSTD qualified for zero flight time (ZFT) conversion and the flight crew member successfully completed the ZFT type rating conversion course; and - (C) the flight crew member, trained and qualified in accordance with (B), is qualified to operate during the conduct of LIFUS to the lowest approved DA/H and RVR as stipulated in the operations manual. - (iii) For CAT III approaches using HUDLS to touchdown, a minimum of four approaches. #### **TYPE AND COMMAND EXPERIENCE** - (e) Type and command experience - (1) Before commencing CAT II operations, the following additional provisions should be applicable to pilots-in-command/commanders, or pilots to whom conduct of the flight may be delegated, who are new to the aircraft type or class: - (i) 50 hours or 20 sectors on the type, including LIFUS; and - (ii) 100 m should be added to the applicable CAT II RVR minima when the operation requires a CAT II manual landing or use of HUDLS to touchdown until: - (A) a total of 100 hours or 40 sectors, including LIFUS, has been achieved on the type; or - (B) a total of 50 hours or 20 sectors, including LIFUS, has been achieved on the type where the flight crew member has been previously qualified for CAT II manual landing operations with an EU operator; - (C) for HUDLS operations the sector provisions in (e)(1) and (e)(2)(i) should always be applicable; the hours on type or class do not fulfil the provisions. - (2) Before commencing CAT III operations, the following additional provisions should be applicable to pilots-in-command/commanders, or pilots to whom conduct of the flight may be delegated, who are new to the aircraft type: - (i) 50 hours or 20 sectors on the type, including LIFUS; and - (ii) 100 m should be added to the applicable CAT II or CAT III RVR minima unless he/she has previously qualified for CAT II or III operations with an EU operator, until a total of 100 hours or 40 sectors, including LIFUS, has been achieved on the type. #### **RECURRENT TRAINING AND CHECKING** - (f) Recurrent training and checking LVO - (1) The operator should ensure that, in conjunction with the normal recurrent training and operator's proficiency checks, the pilot's knowledge and ability to perform the tasks associated with the particular category of operation, for which the pilot is authorised by the operator, are checked. The required number of approaches to be undertaken in the FSTD within the validity period of the operator's proficiency check should be a minimum of two, respectively four when HUDLS and/or EVS is utilised to touchdown, one of which should be a landing at the lowest approved RVR. In addition one, respectively two for HUDLS and/or operations utilising EVS, of these approaches may be substituted by an approach and landing in the aircraft using approved CAT II and CAT III procedures. One missed approach should be flown during the conduct of an operator proficiency check. If the operator is approved to conduct take-off with RVR less than 150 m, at least one LVTO to the lowest applicable minima should be flown during the conduct of the operator's proficiency check. - (2) For CAT III operations the operator should use an FSTD approved for this purpose. - (3) For CAT III operations on aircraft with a fail-passive flight control system, including HUDLS, a missed approach should be completed by each flight crew member at least once over the period of three consecutive operator proficiency checks as the result of an autopilot failure at or below DH when the last reported RVR was 300 m or less. #### **LVTO OPERATIONS** - (g) LVTO with RVR less than 400 m - (1) Prior to conducting take-offs in RVRs below 400 m, the flight crew should undergo the following training: - (i) normal take-off in minimum approved RVR conditions; - (ii) take-off in minimum approved RVR conditions with an engine failure: - (A) for aeroplanes between V₁ and V₂ (take-off safety speed), or as soon as safety considerations permit; - (B) for helicopters at or after take-off decision point (TDP); and - (iii) take-off in minimum approved RVR conditions with an engine failure: - (A) for aeroplanes before V₁ resulting in a rejected take-off; and - (B) for helicopters before the TDP. - (2) The operator approved for LVTOs with an RVR below 150 m should ensure that the training specified by (g)(1) is carried out in an FSTD. This training should include the use of any special procedures and equipment. - (3) The operator should ensure that a flight crew member has completed a check before conducting LVTO in RVRs of less than 150 m. The check may be replaced by successful completion of the FSTD and/or flight training prescribed in (g)(1) on conversion to an aircraft type. #### LTS CAT I, OTS CAT II, OPERATIONS UTILISING EVS - (h) Additional training provisions - (1) General Operators conducting LTS CAT I operations, OTS CAT II operations and operations utilising EVS with RVR of 800 m or less should comply with the provisions applicable to CAT II operations and include the provisions applicable to HUDLS, if appropriate. The operator may combine these additional provisions where appropriate provided that the operational procedures are compatible. (2) LTS CAT I During conversion training the total number of approaches should not be additional to the requirements of Subpart FC of Part BCAR.ORO.FC provided the training is conducted utilising the lowest applicable RVR. During recurrent training and checking the operator may also combine the separate requirements provided the above operational procedure provision is met and at least one approach using LTS CAT I minima is conducted at least once every 18 months. #### (3) OTS CAT II During conversion training the total number of approaches should not be less than those to complete CAT II training utilising a HUD/HUDLS. During recurrent training and checking the operator may also combine the separate provisions provided the above operational procedure provision is met and at least one approach using OTS CAT II minima is conducted at least once every 18 months. (4) Operations utilising EVS with RVR of 800 m or less During conversion training the total number of approaches required should not be less than that required to complete CAT II training utilising a HUD. During recurrent training and checking the operator may also combine the separate provisions provided the above operational procedure provision is met and at least one approach utilising EVS is conducted at least once every 12 months. # GM1 BCAR.SPA.LVO.120 Flight crew training and qualifications #### **FLIGHT CREW TRAINING** The number of approaches referred to in AMC1 BCAR.SPA.LVO.120 (f)(1) includes one approach and landing that may be conducted in the aircraft using approved CAT II/III procedures. This approach and landing may be conducted in normal line operation or as a training flight. # BCAR.SPA.LVO.125 Operating procedures - (a) The operator shall establish procedures and instructions to be used for LVOs. These procedures and instructions shall be included in the operations manual or procedures manual and contain the duties of flight crew members during taxiing, take-off, approach, flare, landing, rollout and missed approach operations, as appropriate. - (b) Prior to commencing an LVO, the pilot-in-command/commander shall be satisfied that: - (1) the status of the visual and non-visual facilities is sufficient; - (2) appropriate LVPs are in force according to information received from air traffic services (ATS); - (3) flight crewmembers are properly qualified. # AMC1 BCAR.SPA.LVO.125 operating procedures #### **GENERAL** - (a) LVOs should include the following: - (1) manual take-off, with or without electronic guidance systems or HUDLS/hybrid
HUD/HUDLS; - (2) approach flown with the use of a HUDLS/hybrid HUD/HUDLS and/or EVS; - (3) auto-coupled approach to below DH, with manual flare, hover, landing and rollout; - (4) auto-coupled approach followed by auto-flare, hover, auto-landing and manual rollout; and - (5) auto-coupled approach followed by auto-flare, hover, auto-landing and auto-rollout, when the applicable RVR is less than 400 m. #### PROCEDURES AND INSTRUCTIONS - (b) The operator should specify detailed operating procedures and instructions in the operations manual or procedures manual. - (1) The precise nature and scope of procedures and instructions given should depend upon the airborne equipment used and the flight deck procedures followed. The operator should clearly define flight crew member duties during take-off, approach, flare, hover, rollout and missed approach in the operations manual or procedures manual. Particular emphasis should be placed on flight crew responsibilities during transition from non-visual conditions to visual conditions, and on the procedures to be used in deteriorating visibility or when failures occur. Special attention should be paid to the distribution of flight deck duties so as to ensure that the workload of the pilot making the decision to land or execute a missed approach enables him/her to devote himself/herself to supervision and the decision making process. - (2) The instructions should be compatible with the limitations and mandatory procedures contained in the AFM and cover the following items in particular: - (i) checks for the satisfactory functioning of the aircraft equipment, both before departure and in flight; - (ii) effect on minima caused by changes in the status of the ground installations and airborne equipment; - (iii) procedures for the take-off, approach, flare, hover, landing, rollout and missed approach; - (iv) procedures to be followed in the event of failures, warnings to include HUD/HUDLS/EVS and other non-normal situations; - (v) the minimum visual reference required; - (vi) the importance of correct seating and eye position; - (vii) action that may be necessary arising from a deterioration of the visual reference; - (viii) allocation of crew duties in the carrying out of the procedures according to (b)(2)(i) to (iv) and (vi), to allow the pilot-in-command/commander to devote himself/herself mainly to supervision and decision making; - (ix) the rule for all height calls below 200 ft to be based on the radio altimeter and for one pilot to continue to monitor the aircraft instruments until the landing is completed; - (x) the rule for the localiser sensitive area to be protected; - (xi) the use of information relating to wind velocity, wind shear, turbulence, runway contamination and use of multiple RVR assessments; - (xii) procedures to be used for: - (A) LTS CAT I; - (B) OTS CAT II; - (C) approach operations utilising EVS; and - (D) practice approaches and landing on runways at which the full CAT II or CAT III aerodrome procedures are not in force; - (xiii) operating limitations resulting from airworthiness certification; and - (xiv) information on the maximum deviation allowed from the ILS glide path and/or localiser. # BCAR.SPA.LVO.130 Minimum equipment - (a) The operator shall include the minimum equipment that has to be serviceable at the commencement of an LVO in accordance with the aircraft flight manual (AFM) or other approved document in the operations manual or procedures manual, as applicable. - (b) The pilot-in-command/commander shall be satisfied that the status of the aircraft and of the relevant airborne systems is appropriate for the specific operation to be conducted. # SUBPART F: EXTENDED RANGE OPERATIONS WITH TWO-ENGINED AEROPLANES (ETOPS) Reserved # **SUBPART G: TRANSPORT OF DANGEROUS GOODS** # BCAR.SPA.DG.100 Transport of dangerous goods Except as provided for in BCAR-CAT and BCAR-SPO, the operator shall only transport dangerous goods by air if the operator has been approved by the BCAA. # BCAR.SPA.DG.105 Approval to transport dangerous goods To obtain the approval to transport dangerous goods, the operator shall in accordance with the technical instructions: - (a) establish and maintain a training programme for all personnel involved and demonstrate to the BCAA that adequate training has been given to all personnel; - (b) establish operating procedures to ensure the safe handling of dangerous goods at all stages of air transport, containing information and instructions on: - (1) the operator's policy to transport dangerous goods; - (2) the requirements for acceptance, handling, loading, stowage and segregation of dangerous goods; - (3) actions to take in the event of an aircraft accident or incident when dangerous goods are being carried; - (4) the response to emergency situations involving dangerous goods; - (5) the removal of any possible contamination; - (6) the duties of all personnel involved, especially with relevance to ground handling and aircraft handling; - (7) inspection for damage, leakage or contamination; - (8) dangerous goods accident and incident reporting. ## AMC1 BCAR.SPA.DG.105 (a) Approval to transport dangerous goods # TRAINING PROGRAMME - (a) The operator should indicate for the approval of the training programme how the training will be carried out. For formal training courses, the course objectives, the training programme syllabus and examples of the written examination to be undertaken should be included. - (b) Instructors should have knowledge of training techniques as well as in the field of transport of dangerous goods by air so that the subject is covered fully and questions can be adequately answered. - (c) Training intended to give general information and guidance may be by any means including handouts, leaflets, circulars, slide presentations, videos, computer-based training, etc., and may take place on-the-job or off-the-job. The person being trained should receive an overall awareness of the subject. This training should include a written, oral or computer-based examination covering all areas of the training programme, showing that a required minimum level of knowledge has been acquired. - (d) Training intended to give an in-depth and detailed appreciation of the whole subject or particular aspects of it should be by formal training courses, which should include a written examination, the successful passing of which will result in the issue of the proof of qualification. The course may be by means of tuition, as a self-study programme, or a mixture of both. The person being trained should gain sufficient knowledge so as to be able to apply the detailed rules of the Technical Instructions. - (e) Training in emergency procedures should include as a minimum: - (1) for personnel other than crew members: - (i) dealing with damaged or leaking packages; and - (ii) other actions in the event of ground emergencies arising from dangerous goods; - (2) for flight crew members: - (i) actions in the event of emergencies in flight occurring in the passenger compartment or in the cargo compartments; and - (ii) the notification to ATS should an in-flight emergency occur; - (3) for crew members other than flight crew members: - (i) dealing with incidents arising from dangerous goods carried by passengers; or - (ii) dealing with damaged or leaking packages in flight. - (f) Training should be conducted at intervals of no longer than 2 years. #### AMC1 BCAR.SPA.DG.105 (b) Approval to transport dangerous goods # PROVISION OF INFORMATION IN THE EVENT OF AN IN-FLIGHT EMERGENCY If an in-flight emergency occurs the pilot-in-command/commander should, as soon as the situation permits, inform the appropriate ATS unit of any dangerous goods carried as cargo on board the aircraft, as specified in the Technical Instructions. # GM1 BCAR.SPA.DG.105 (b)(6) Approval to transport dangerous goods #### **PERSONNEL** Personnel include all persons involved in the transport of dangerous goods, whether they are employees of the operator or not. # BCAR.SPA.DG.110 Dangerous goods information and documentation The operator shall, in accordance with the technical instructions: - (a) provide written information to the pilot-in-command/commander: - (1) about dangerous goods to be carried on the aircraft; - (2) for use in responding to in-flight emergencies; - (b) use an acceptance checklist; - (c) ensure that dangerous goods are accompanied by the required dangerous goods transport document(s), as completed by the person offering dangerous goods for air transport, except when the information applicable to the dangerous goods is provided in electronic form; - (d) ensure that where a dangerous goods transport document is provided in written form, a copy of the document is retained on the ground where it will be possible to obtain access to it within a reasonable period until the goods have reached their final destination; - (e) ensure that a copy of the information to the pilot-in-command/commander is retained on the ground and that this copy, or the information contained in it, is readily accessible to the aerodromes of last departure and next scheduled arrival, until after the flight to which the information refers; - (f) retain the acceptance checklist, transport documents and information to the pilot-in-command/commander for at least three months after completion of the flight; - (g) retain the training records of all personnel for at least three years. # AMC1 BCAR.SPA.DG.110 (a) Dangerous goods information and documentation #### INFORMATION TO THE PILOT-IN-COMMAND/COMMANDER If the volume of information provided to the pilot-in-command/commander by the operator is such that it would be impracticable to transmit it in the event of an in-flight emergency, an additional summary of the information should also be provided, containing at least the quantities and class or division of the dangerous goods in each cargo compartment. AMC1 BCAR.SPA.DG.110 (b) Dangerous goods
information and documentation # **ACCEPTANCE OF DANGEROUS GOODS** - (a) The operator should not accept dangerous goods unless: - (1) the package, over pack or freight container has been inspected in accordance with the acceptance procedures in the Technical Instructions; - (2) they are accompanied by two copies of a dangerous goods transport document or the information applicable to the consignment is provided in electronic form, except when otherwise specified in the Technical Instructions; and - (3) the English language is used for: - (i) package marking and labelling; and - (ii) the dangerous goods transport document, in addition to any other language provision. - (b) The operator or his/her handling agent should use an acceptance checklist which allows for: - (1) all relevant details to be checked; and - (2) the recording of the results of the acceptance check by manual, mechanical or computerised means. # SUBPART H: HELICOPTER OPERATIONS WITH NIGHT VISION IMAGING SYSTEMS Reserved # SUBPART I: HELICOPTER HOIST OPERATIONS # BCAR.SPA.HHO.100 Helicopter hoist operations (HHO) - (a) Helicopters shall only be operated for the purpose of CAT hoist operations if the operator has been approved by the BCAA. - (b) To obtain such approval by the BCAA, the operator shall: - (1) operate in CAT and hold a CAT AOC in accordance with BCAR-ORO; - (2) demonstrate to the BCAA compliance with the requirements contained in this Subpart. # BCAR.SPA.HHO.110 Equipment requirements for HHO - (a) The installation of all helicopter hoist equipment, including any radio equipment to comply with BCAR.SPA.HHO.115, and any subsequent modifications, shall have an airworthiness approval appropriate to the intended function. Ancillary equipment shall be designed and tested to the appropriate standard as required by the BCAA. - (b) Maintenance instructions for HHO equipment and systems shall be established by the operator in liaison with the manufacturer and included in the operator's helicopter maintenance programme as required by BCAR- M. # AMC1 BCAR.SPA.HHO.110 (a) Equipment requirements for HHO #### AIRWORTHINESS APPROVAL FOR HUMAN EXTERNAL CARGO - (a) Hoist installations that have been certificated according to any of the following standards should be considered to satisfy the airworthiness criteria for human external cargo (HEC) operations: - (1) CS 27.865 or CS 29.865; - (2) JAR 27 Amendment 2 (27.865) or JAR 29 Amendment 2 (29.865) or later; - (3) FAR 27 Amendment 36 (27.865) or later including compliance with CS 27.865(c)(6); or - (4) FAR 29 Amendment 43 (29.865) or later. - (b) Hoist installations that have been certified prior to the issuance of the airworthiness criteria for HEC as defined in (a) may be considered as eligible for HHO provided that following a risk assessment either: - (1) the service history of the hoist installation is found satisfactory to the competent authority; or - (2) for hoist installations with an unsatisfactory service history, additional substantiation to allow acceptance by the competent authority should be provided by the hoist installation certificate holder (type certificate (TC) or supplemental type certificate (STC)) on the basis of the following requirements: - (i) The hoist installation should withstand a force equal to a limit static load factor of 3.5, or some lower load factor, not less than 2.5, demonstrated to be the maximum - load factor expected during hoist operations, multiplied by the maximum authorised external load. - (ii) The reliability of the primary and back-up quick release systems at helicopter level should be established and failure mode and effect analysis at equipment level should be available. The assessment of the design of the primary and back-up quick release systems should consider any failure that could be induced by a failure mode of any other electrical or mechanical rotorcraft system. - (iii) The operations or flight manual contains one-engine-inoperative (OEI) hover performance data and procedures for the weights, altitudes, and temperatures throughout the flight envelope for which hoist operations are accepted. - (iv) Information concerning the inspection intervals and retirement life of the hoist cable should be provided in the instructions for continued airworthiness. - (v) Any airworthiness issue reported from incidents or accidents and not addressed by (i), (ii), (iii) and (iv) should be addressed. # BCAR.SPA.HHO.115 HHO communication Being provided and, where possible, a means of communicating with ground prosonnel at the HHO - (a). Not applicable - (b) operating sites # BCAR.SPA.HHO.125 Performance requirements for HHO Except for HHO at a HEMS operating site, HHO shall be capable of sustaining a critical engine failure with the remaining engine(s) at the appropriate power setting without hazard to the suspended person(s)/cargo, third parties or property. # BCAR.SPA.HHO.130 Crew requirements for HHO - (a) Selection. The operator shall establish criteria for the selection of flight crew members for the HHO task, taking previous experience into account. - (b) Experience. The minimum experience level for the commander conducting HHO flights shall not be less than: (1) Offshore: NA - (2) Onshore: - (i) 500 hours as pilot-in-command/commander of helicopters, or 500 hours as co-pilot in HHO of which 100 hours is as pilot-in-command under supervision; - (ii) 200 hours operating experience in helicopters gained in an operational environment similar to the intended operation; and - (c) Operational training and experience. Successful completion of training in accordance with the HHO procedures contained in the operations manual and relevant experience in the role and environment under which HHO are conducted. - (d) Recency. All pilots and HHO crew members conducting HHO shall have completed in the last 90 days: - (1) when operating by day: any combination of three day hoist cycles, each of which shall include a transition to and from the hover; - (e) Crew composition. The minimum crew for day operations shall be as stated in the operations manual. The minimum crew will be dependent on the type of helicopter, the weather conditions, the type of task,. In no case shall the minimum crew be less than one pilot and one HHO crew member. - (f) Training and checking - (1) Training and checking shall be conducted in accordance with a detailed syllabus approved by the BCAA and included in the operations manual. - (2) Crew members: - (i) Crew training programmes shall: improve knowledge of the HHO working environment and equipment; improve crew coordination; and include measures to minimise the risks associated with HHO normal and emergency procedures and static discharge. - (ii) The measures referred to in (f)(2)(i) shall be assessed during visual meteorological conditions (VMC) day proficiency checks undertaken by the operator. # AMC1 BCAR.SPA.HHO.130 (b) (2) (ii) Crew requirements for HHO #### **RELEVANT EXPERIENCE** The experience considered should take into account the geographical characteristics (sea, mountain, big cities with heavy traffic, etc.). # AMC1 BCAR.SPA.HHO.130 (e) Crew requirements for HHO #### **CRITERIA FOR TWO PILOT HHO** A crew of two pilots should be used when: - (a) the weather conditions are below VFR minima at the structure; - (b) there are adverse weather conditions at the HHO site (i.e. turbulence, vessel movement, visibility); and - (c) the type of helicopter requires a second pilot to be carried because of: - (1) cockpit visibility; - (2) handling characteristics; or - (3) lack of automatic flight control systems. # AMC1 BCAR.SPA.HHO.130 (f) (1) Crew requirements for HHO # TRAINING AND CHECKING SYLLABUS - (a) The flight crew training syllabus should include the following items: - (1) fitting and use of the hoist; - (2) preparing the helicopter and hoist equipment for HHO; - (3) normal and emergency hoist procedures by day; - (4) crew coordination concepts specific to HHO; - (5) practice of HHO procedures; and - (6) the dangers of static electricity discharge. - (b) The flight crew checking syllabus should include: - (1) proficiency checks, which should include procedures likely to be used at HHO sites with special emphasis on: - (i) local area meteorology; - (ii) HHO flight planning; - (iii) HHO departures; - (iv) a transition to and from the hover at the HHO site; - (v) normal and simulated emergency HHO procedures; and - (vi) crew coordination. - (c) HHO technical crew members should be trained and checked in the following items: - (1) duties in the HHO role; - (2) fitting and use of the hoist; - (3) operation of hoist equipment; - (4) preparing the helicopter and specialist equipment for HHO; - (5) normal and emergency procedures; - (6) crew coordination concepts specific to HHO; - (7) operation of inter-communication and radio equipment; - (8) knowledge of emergency hoist equipment; - (9) techniques for handling HHO passengers; - (10) effect of the movement of personnel on the centre of gravity and mass during HHO; - (11) effect of the movement of personnel on performance during normal and emergency flight conditions; - (12) techniques for guiding pilots over HHO sites; - (13) awareness of specific dangers relating to the operating environment; and - (14) the dangers of static electricity discharge. # BCAR.SPA.HHO.135 HHO passenger briefing Prior to any HHO flight, or series of flights, HHO passengers shall have been briefed and made aware of the dangers of static electricity discharge and other HHO considerations. # BCAR.SPA.HHO.140 Information and documentation (a) The operator shall ensure that, as part of its risk analysis and management process, risks associated with the HHO environment are minimised by specifying in the operations manual: selection, composition and training of crews; levels of equipment and dispatch criteria; and - operating procedures and minima, such that normal and likely abnormal operations are described and
adequately mitigated. - (b) Relevant extracts from the operations manual shall be available to the organisation for which the HHO is being provided. # AMC1 BCAR.SPA.HHO.140 Information and documentation #### **OPERATIONS MANUAL** The operations manual should include: - (a) performance criteria; - (b) if applicable, the conditions under which offshore HHO transfer may be conducted including the relevant limitations on vessel movement and wind speed; - (c) the weather limitations for HHO; - (d) the criteria for determining the minimum size of the HHO site, appropriate to the task; - (e) the procedures for determining minimum crew; and - (f) the method by which crew members record hoist cycles. # SUBPART J: HELICOPTER EMERGENCY MEDICAL SERVICE **OPERATIONS** # BCAR.SPA.HEMS.100 Helicopter emergency medical service (HEMS) operation - Helicopters shall only be operated for the purpose of HEMS operations if the operator has been (a) approved by the BCAA. - (b) To obtain such approval by the BCAA, the operator shall: - operate in CAT and hold a CAT AOC in accordance with BCAR-ORO; (1) - demonstrate to the BCAA compliance with the requirements contained in this Subpart. (2) # GM1 BCAR.SPA.HEMS.100 (a) Helicopter emergency medical service (HEMS) operations #### THE HEMS PHILOSOPHY #### (a) Introduction This GM outlines the HEMS philosophy. Starting with a description of acceptable risk and introducing a taxonomy used in other industries, it describes how risk has been addressed in this Subpart to provide a system of safety to the appropriate standard. It discusses the difference between HEMS and air ambulance - in regulatory terms. It also discusses the application of operations to public interest sites in the HEMS context. #### (b) Acceptable risk The broad aim of any aviation legislation is to permit the widest spectrum of operations with the minimum risk. In fact it may be worth considering who/what is at risk and who/what is being protected. In this view three groups are being protected: - (1) third parties (including property) - highest protection; - (2) passengers (including patients); and - (3) crew members (including technical crew members) – lowest. It is for the Legislator to facilitate a method for the assessment of risk - or as it is more commonly known, safety management (refer to BCAR-ORO). #### (c) Risk management Safety management textbooks² describe four different approaches to the management of risk. All but the first have been used in the production of this section and, if it is considered that the engine failure accountability of performance class 1 equates to zero risk, then all four are used (this of course is not strictly true as there are a number of helicopter parts - such as the tail rotor which, due to a lack of redundancy, cannot satisfy the criteria): (1) Applying the taxonomy to HEMS gives: ² Reason J, 1997. Managing the risks of organization accidents, Ashgate, Farnham - (i) zero risk; no risk of accident with a harmful consequence performance class 1 (within the qualification stated above) the HEMS operating base; - (ii) de minimis; minimised to an acceptable safety target for example the exposure time concept where the target is less than 5×10^{-8} (in the case of elevated final approach and take-off areas (elevated FATOs) at hospitals in a congested hostile environment the risk is contained to the deck edge strike case and so in effect minimised to an exposure of seconds); - (iii) comparative risk; comparison to other exposure the carriage of a patient with a spinal injury in an ambulance that is subject to ground effect compared to the risk of a HEMS flight (consequential and comparative risk); - (iv) as low as reasonably practicable; where additional controls are not economically or reasonably practicable operations at the HEMS operating site (the accident site). - (2) HEMS operations are conducted in accordance with the requirements contained in BCAR-CAT and BCAR-ORO, except for the variations contained in BCAR.SPA.HEMS, for which a specific approval is required. In simple terms there are three areas in HEMS operations where risk, beyond that allowed in BCAR-CAT and BCAR-ORO, are identified and related risks accepted: - (i) in the en-route phase, where alleviation is given from height and visibility rules; - (ii) at the accident site, where alleviation is given from the performance and size requirement; and - (iii) at an elevated hospital site in a congested hostile environment, where alleviation is given from the deck edge strike providing elements of the CAT.POL.H.305 are satisfied. - In mitigation against these additional and considered risks, experience levels are set, specialist training is required (such as instrument training to compensate for the increased risk of inadvertent entry into cloud) and operation with two crew (two pilots, or one pilot and a HEMS technical crew member) is mandated. (HEMS crews and medical passengers are also expected to operate in accordance with good crew resource management (CRM) principles.) # (d) Air ambulance In regulatory terms, air ambulance is considered to be a normal transport task where the risk is no higher than for operations to the full BCAR-CAT and BCAR-ORO compliance. This is not intended to contradict/complement medical terminology but is simply a statement of policy; none of the risk elements of HEMS should be extant and therefore none of the additional requirements of HEMS need be applied. To provide a road ambulance analogy: - (1) if called to an emergency: an ambulance would proceed at great speed, sounding its siren and proceeding against traffic lights thus matching the risk of operation to the risk of a potential death (= HEMS operations); - (2) for a transfer of a patient (or equipment) where life and death (or consequential injury of ground transport) is not an issue: the journey would be conducted without sirens and within normal rules of motoring once again matching the risk to the task (= air ambulance operations). The underlying principle is that the aviation risk should be proportionate to the task. It is for the medical professional to decide between HEMS or air ambulance - not the pilot. For that reason, medical staff who undertake to task medical sorties should be fully aware of the additional risks that are (potentially) present under HEMS operations (and the prerequisite for the operator to hold a HEMS approval). (For example in some countries, hospitals have principal and alternative sites. The patient may be landed at the safer alternative site (usually in the grounds of the hospital) thus eliminating risk - against the small inconvenience of a short ambulance transfer from the site to the hospital.) Once the decision between HEMS or air ambulance has been taken by the medical professional, the commander makes an operational judgement over the conduct of the flight. Simplistically, the above type of air ambulance operations could be conducted by any operator holding an Air Operator Certificate (AOC) (HEMS operators hold an AOC) - and usually are when the carriage of medical supplies (equipment, blood, organs, drugs etc.) is undertaken and when urgency is not an issue. # (e) Operating under a HEMS approval There are only two possibilities: transportation as passengers or cargo under the full auspices of BCAR-CAT and Part-ORO (this does not permit any of the alleviations of BCAR.SPA.HEMS - landing and take-off performance should be in compliance with the performance Subparts of Part-CAT), or operations under a HEMS approval as contained in this Subpart. ## (f) HEMS operational sites The HEMS philosophy attributes the appropriate levels of risk for each operational site; this is derived from practical considerations and in consideration of the probability of use. The risk is expected to be inversely proportional to the amount of use of the site. The types of site are as follows: - (1) HEMS operating base: from which all operations will start and finish. There is a high probability of a large number of take-offs and landings at this HEMS operating base and for that reason no alleviation from operating procedures or performance rules are contained in this Subpart. - (2) HEMS operating site: because this is the primary pick-up site related to an incident or accident, its use can never be pre-planned and therefore attracts alleviations from operating procedures and performance rules, when appropriate. - (3) The hospital site: is usually at ground level in hospital grounds or, if elevated, on a hospital building. It may have been established during a period when performance criteria were not a consideration. The amount of use of such sites depends on their location and their facilities; normally, it will be greater than that of the HEMS operating site but less than for a HEMS operating base. Such sites attract some alleviation under this Subpart. # (g) Problems with hospital sites During implementation of the original HEMS rules contained in JAR-OPS3, it was established that a number of States had encountered problems with the impact of performance rules where helicopters were operated for HEMS. Although States accept that progress should be made towards operations where risks associated with a critical engine failure are eliminated, or limited by the exposure time concept, a number of landing sites exist that do not (or never can) allow operations to performance class 1 or 2 requirements. These sites are generally found in a congested hostile environment: (1) in the grounds of hospitals; or (2) on hospital buildings. The problem of hospital sites is mainly historical and, whilst the authority could insist that such sites are not used — or used at such a low weight that critical engine failure performance is assured —it would seriously curtail a number of existing operations. Even though the rule for the use of such sites in hospital grounds for HEMS operations attracts alleviation, it is only partial and
will still impact upon present operations. Because such operations are performed in the public interest, it was felt that the authority should be able to exercise its discretion so as to allow continued use of such sites provided that it is satisfied that an adequate level of safety can be maintained - notwithstanding that the site does not allow operations to performance class 1 or 2 standards. However, it is in the interest of continuing improvements in safety that the alleviation of such operations be constrained to existing sites, and for a limited period. It is felt that the use of public interest sites should be controlled. This will require that a State directory of sites be kept and approval given only when the operator has an entry in the route manual section of the operations manual. The directory (and the entry in the operations manual) should contain for each approved site: - (i) the dimensions; - (ii) any non-conformance with ICAO Annex 14; - (iii) the main risks; and - (iv) the contingency plan should an incident occur. Each entry should also contain a diagram (or annotated photograph) showing the main aspects of the site. #### (h) Summary In summary, the following points are considered to be pertinent to the HEMS philosophy and HEMS regulations: - (1) absolute levels of safety are conditioned by society; - (2) potential risk must only be to a level proportionate to the task; - (3) protection is afforded at levels appropriate to the occupants; - (4) this Subpart addresses a number of risk areas and mitigation is built in; - (5) only HEMS operations are dealt with by this Subpart; - (6) there are three main categories of HEMS sites and each is addressed appropriately; and - (7) State alleviation from the requirement at a hospital site is available but such alleviations should be strictly controlled by a system of registration. # BCAR.SPA.HEMS.110 Equipment requirements for HEMS operations The installation of all helicopter dedicated medical equipment and any subsequent modifications and, where appropriate, its operation shall be approved in accordance with BCAR – M. # BCAR.SPA.HEMS.115 Communication In addition to that required by CAT.IDE.H, helicopters conducting HEMS flights shall have communication equipment capable of conducting two-way communication with the organisation for which the HEMS is being conducted and, where possible, to communicate with ground emergency service personnel. # BCAR.SPA.HEMS.120 HEMS operating minima (a) HEMS flights operated in performance class 1 and 2 shall comply with the weather minima in Table 1 for dispatch and en-route phase of the HEMS flight. In the event that during the enroute phase the weather conditions fall below the cloud base or visibility minima shown, helicopters certified for flights only under VMC shall abandon the flight or return to base. Helicopters equipped and certified for instrument meteorological conditions (IMC) operations may abandon the flight, return to base or convert in all respects to a flight conducted under instrument flight rules (IFR), provided the flight crew are suitably qualified. | Table 1 HEMS operating minima | | | | | |-------------------------------|-----------------------|--------------|---------------------|--| | | | | | | | DAY | | | | | | Ceiling | Visibility | Ceiling | Visibility | | | 500 ft and | As defined by the | 500 ft and | As defined by the | | | above | applicable | above | applicable airspace | | | | airspace VFR | | VFR minima | | | | minima | | | | | 499 - 400 ft | 1000 m ^(*) | 499 – 400 ft | 2 000 m | | | 2 PILOTS | | 1 PILOT | | | | 399 - 300 ft | 2 000 m | 399 – 300 ft | 3 000 m | | - (*) During the en-route phase visibility may be reduced to 800 m for short periods when in sight of land if the helicopter is manoeuvred at a speed that will give adequate opportunity to observe any obstacles in time to avoid a collision. - (b) The weather minima for the dispatch and en-route phase of a HEMS flight operated in performance class 3 shall be a cloud ceiling of 600 ft and a visibility of 1500 m. Visibility may be reduced to 800 m for short periods when in sight of land if the helicopter is manoeuvred at a speed that will give adequate opportunity to observe any obstacle and avoid a collision. # GM1 BCAR.SPA.HEMS.120 HEMS operating minima # **REDUCED VISIBILITY** (a) In the rule the ability to reduce the visibility for short periods has been included. This will allow the commander to assess the risk of flying temporarily into reduced visibility against the need to provide emergency medical service, taking into account the advisory speeds included in Table 1. Since every situation is different it was not felt appropriate to define the short period in terms of absolute figures. It is for the commander to assess the aviation risk to third parties, the crew - and the aircraft such that it is proportionate to the task, using the principles of GM1 BCAR.SPA.HEMS.100 (a). - (b) When flight with a visibility of less than 5 km is permitted, the forward visibility should not be less than the distance travelled by the helicopter in 30 seconds so as to allow adequate opportunity to see and avoid obstacles (see table below). Table 1 Operating minima – reduced visibility | Visibility (m) | Advisory speed (kt) | |----------------|---------------------| | 800 | 50 | | 1 500 | 100 | | 2 000 | 120 | | | | # BCAR.SPA.HEMS.125 Performance requirements for HEMS operations - (a) Performance class 3 operations shall not be conducted over a hostile environment. - (b) Take-off and landing - (1) Helicopters conducting operations to/from a final approach and take-off area (FATO) at a hospital that is located in a congested hostile environment and that is used as a HEMS operating base shall be operated in accordance with performance class 1. - (2) Helicopters conducting operations to/from a FATO at a hospital that is located in a congested hostile environment and that is not a HEMS operating base shall be operated in accordance with performance class 1, except when the operator holds an approval in accordance with CAT.POL.H.225. - (3) Helicopters conducting operations to/from a HEMS operating site located in a hostile environment shall be operated in accordance with performance class 2 and be exempt from the approval required by CAT.POL.H.305(a), provided compliance is shown with CAT.POL.H.305(b)(2) and (b)(3). - (4) The HEMS operating site shall be big enough to provide adequate clearance from all obstructions. # GM1 BCAR.SPA.HEMS.125 (b)(3) Performance requirements for HEMS operations #### PERFORMANCE CLASS 2 OPERATIONS AT A HEMS OPERATING SITE As the risk profile at a HEMS operating site is already well known, operations without an assured safe forced landing capability do not need a separate approval and the requirements does not call for the additional risk assessment that is specified in CAT.POL.H.305 (b)(1). # AMC1 BCAR.SPA.HEMS.125 (b)(4) Performance requirements for HEMS operations #### **HEMS OPERATING SITE DIMENSIONS** - (a) When selecting a HEMS operating site it should have a minimum dimension of at least 2 x D (the largest dimensions of the helicopter when the rotors are turning). - (b) Not applicable # BCAR.SPA.HEMS.130 Crew requirements - (a) Selection. The operator shall establish criteria for the selection of flight crew members for the HEMS task, taking previous experience into account. - (b) Experience. The minimum experience level for the commander conducting HEMS flights shall not be less than: - (1) either: - (i) 1 000 hours as pilot-in-command/commander of aircraft of which 500 hours are as pilot-in-command/commander on helicopters; or - (ii) 1 000 hours as co-pilot in HEMS operations of which 500 hours are as pilot-incommand under supervision and 100 hours pilot-in-command/commander of helicopters; - (2) 500 hours' operating experience in helicopters, gained in an operational environment similar to the intended operation; and - (c) Operational training. Successful completion of operational training in accordance with the HEMS procedures contained in the operations manual. - (d) Recency. All pilots conducting HEMS operations shall have completed a minimum of 30 minutes flight by sole reference to instruments in a helicopter within the last six months. - (e) Crew composition - (1) Day flight. The minimum crew by day shall be one pilot and one HEMS technical crew member. - (i) This may be reduced to one pilot only when: - (A) at a HEMS operating site the commander is required to fetch additional medical supplies. In such case the HEMS technical crew member may be left to give assistance to ill or injured persons while the commander undertakes this flight; - (B) after arriving at the HEMS operating site, the installation of the stretcher precludes the HEMS technical crew member from occupying the front seat; or - (C) the medical passenger requires the assistance of the HEMS technical crew member in flight. - (ii) In the cases described in (i), the operational minima shall be as defined by the applicable airspace requirements; the HEMS operating minima contained in Table 1 of BCAR.SPA.HEMS.120 shall not be used. (iii) Only in the case described in (i)(A) may the commander land at a HEMS operating site without the technical crew member assisting from the front seat. # (2) Not applicable - (f) Crew training and checking - (1) Training and checking shall be conducted in accordance with a detailed syllabus approved by the BCAA and included in the operations manual. - (2) Crew members - (i) Crew training programmes shall: improve knowledge of the HEMS working environment and equipment; improve crew coordination; and include measures to minimise the risks associated with en-route transit in low visibility conditions, selection of HEMS operating sites and approach and departure profiles. - (ii) The measures referred to in (f)(2)(i) shall be assessed during: - (A) VMC day proficiency checks HEMS operations are undertaken
by the operator; and - (B) Line checks. # AMC1 BCAR.SPA.HEMS.130 (b)(2) Crew requirements #### **EXPERIENCE** The minimum experience level for a commander conducting HEMS flights should take into account the geographical characteristics of the operation (sea, mountain, big cities with heavy traffic, etc.). #### AMC1 BCAR.SPA.HEMS.130 (d) Crew requirements #### **RECENCY** This recency may be obtained in a visual flight rules(VFR) helicopter using vision limiting devices such as goggles or screens, or in an FSTD # AMC1 BCAR.SPA.HEMS.130 (e) Crew requirements #### **HEMS TECHNICAL CREW MEMBER** - (a) When the crew is composed of one pilot and one HEMS technical crew member, the latter should be seated in the front seat (co-pilot seat) during the flight, so as to be able to carry out his/her primary task of assisting the commander in: - (1) collision avoidance; - (2) the selection of the landing site; and - (3) the detection of obstacles during approach and take-off phases. - (b) The commander may delegate other aviation tasks to the HEMS technical crew member, as necessary: - (1) assistance in navigation; - (2) assistance in radio communication/radio navigation means selection; - (3) reading of checklists; and - (4) monitoring of parameters. - (c) The commander may also delegate to the HEMS technical crew member tasks on the ground: - (1) assistance in preparing the helicopter and dedicated medical specialist equipment for subsequent HEMS departure; or - (2) assistance in the application of safety measures during ground operations with rotors turning (including: crowd control, embarking and disembarking of passengers, refuelling etc.). - (d) There may be exceptional circumstances when it is not possible for the HEMS technical crew member to carry out his/her primary task as defined under (a). - This is to be regarded as exceptional and is only to be conducted at the discretion of the commander, taking into account the dimensions and environment of the HEMS operating site.) - (e) When two pilots are carried, there is no requirement for a HEMS technical crew member, provided that the pilot monitoring performs the aviation tasks of a technical crew member. # GM1 BCAR.SPA.HEMS.130 (e)(2)(ii) Crew requirements #### SPECIFIC GEOGRAPHICAL AREAS In defining those specific geographical areas, the operator should take account of the cultural lighting and topography. In those areas where the cultural lighting an topography make it unlikely that the visual cues would degrade sufficiently to make flying of the aircraft problematical, the HEMS technical crew member is assumed to be able to sufficiently assist the pilot, since under such circumstances instrument and control monitoring would not be required. In those cases where instrument and control monitoring would be required the operations should be conducted with two pilots. ## AMC1 BCAR.SPA.HEMS.130 (e)(2)(ii)(B) Crew requirements #### **FLIGHT FOLLOWING SYSTEM** A flight following system is a system providing contact with the helicopter throughout its operational area. # AMC1 BCAR.SPA.HEMS.130 (f)(1) Crew requirements #### TRAINING AND CHECKING SYLLABUS - (a) The flight crew training syllabus should include the following items: - (1) meteorological training concentrating on the understanding and interpretation of available weather information; - (2) preparing the helicopter and specialist medical equipment for subsequent HEMS departure; - (3) practice of HEMS departures; - (4) the assessment from the air of the suitability of HEMS operating sites; and - (5) the medical effects air transport may have on the patient. - (b) The flight crew checking syllabus should include: - (1) proficiency checks, which should include landing and take-off profiles likely to be used at HEMS operating sites; and - (2) line checks, with special emphasis on the following: - (i) local area meteorology; - (ii) HEMS flight planning; - (iii) HEMS departures; - (iv) the selection from the air of HEMS operating sites; - (v) low level flight in poor weather; and - (vi) familiarity with established HEMS operating sites in the operator's local area register. - (c) HEMS technical crew members should be trained and checked in the following items: - (1) duties in the HEMS role; - (2) map reading, navigation aid principles and use; - (3) operation of radio equipment; - (4) use of on-board medical equipment; - (5) preparing the helicopter and specialist medical equipment for subsequent HEMS departure; - (6) instrument reading, warnings, use of normal and emergency checklists in assistance of the pilot as required; - (7) basic understanding of the helicopter type in terms of location and design of normal and emergency systems and equipment; - (8) crew coordination; - (9) practice of response to HEMS call out; - (10) conducting refuelling and rotors running refuelling; - (11) HEMS operating site selection and use; - (12) techniques for handling patients, the medical consequences of air transport and some knowledge of hospital casualty reception; - (13) marshalling signals; - (14) underslung load operations as appropriate; - (15) winch operations as appropriate; - (16) the dangers to self and others of rotor running helicopters including loading of patients; - (17) the use of the helicopter inter-communications system. # AMC1 BCAR.SPA.HEMS.130 (f)(2)(ii)(B) Crew requirements # **LINE CHECKS** Where due to the size, the configuration, or the performance of the helicopter, the line check cannot be conducted on an operational flight, it may be conducted on a specially arranged representative flight. This flight may be immediately adjacent to, but not simultaneous with, one of the biannual proficiency checks. # BCAR.SPA.HEMS.135 HEMS medical passenger and other personnel briefing - (a) Medical passenger. Prior to any HEMS flight, or series of flights, medical passengers shall have been briefed to ensure that they are familiar with the HEMS working environment and equipment, can operate on-board medical and emergency equipment and can take part in normal and emergency entry and exit procedures. - (b) Ground emergency service personnel. The operator shall take all reasonable measures to ensure that ground emergency service personnel are familiar with the HEMS working environment and equipment and the risks associated with ground operations at a HEMS operating site. - (c) *Medical patient*. Notwithstanding CAT.OP.MPA.170, a briefing shall only be conducted if the medical condition makes this practicable. AMC1 BCAR.SPA.HEMS.135 (a) HEMS medical passenger and other personnel briefing #### **HEMS MEDICAL PASSENGER BRIEFING** The briefing should ensure that the medical passenger understands his/her role in the operation, which includes: - (a) familiarisation with the helicopter type(s) operated; - (b) entry and exit under normal and emergency conditions both for self and patients; - (c) use of the relevant on-board specialist medical equipment; - (d) the need for the commander's approval prior to use of specialised equipment; - (e) method of supervision of other medical staff; - (f) the use of helicopter inter-communication systems; - (g) location and use of on board fire extinguishers; and - (h) the operator's crew coordination concept including relevant elements of crew resource management. AMC1.1 BCAR.SPA.HEMS.135 (a) HEMS medical passenger and other personnel briefing #### **HEMS MEDICAL PASSENGER BRIEFING** Another means of complying with the rule as compared to that contained in AMC1-BCAR.SPA.HEMS.135 (a) is to make use of a training programme as mentioned in AMC1.1 CAT.OP.MPA.170. AMC1 BCAR.SPA.HEMS.135 (b) HEMS medical passenger and other personnel briefing #### **GROUND EMERGENCY SERVICE PERSONNEL** - (a) The task of training large numbers of emergency service personnel is formidable. Wherever possible, helicopter operators should afford every assistance to those persons responsible for training emergency service personnel in HEMS support. This can be achieved by various means, such as, but not limited to, the production of flyers, publication of relevant information on the operator's web site and provision of extracts from the operations manual. - (b) The elements that should be covered include: - (1) two-way radio communication procedures with helicopters; - (2) the selection of suitable HEMS operating sites for HEMS flights; - (3) the physical danger areas of helicopters; - (4) crowd control in respect of helicopter operations; and - (5) the evacuation of helicopter occupants following an on-site helicopter accident. # BCAR.SPA.HEMS.140 Information and documentation - (a) The operator shall ensure that, as part of its risk analysis and management process, risks associated with the HEMS environment are minimised by specifying in the operations manual: selection, composition and training of crews; levels of equipment and dispatch criteria; and operating procedures and minima, such that normal and likely abnormal operations are described and adequately mitigated. - (b) Relevant extracts from the operations manual shall be made available to the organisation for which the HEMS is being provided. # AMC1 BCAR.SPA.HEMS.140 Information and documentation #### **OPERATIONS MANUAL** The operations manual should include: - (a) the use of portable equipment on board; - (b) guidance on take-off and landing procedures at previously unsurveyed HEMS operating sites; - (c) the final reserve fuel, in accordance with BCAR.SPA.HEMS.150; - (d) operating minima; - (e) recommended routes for regular flights to surveyed sites, including the minimum flight altitude; - (f) guidance for the selection of the HEMS operating site in case of a flight to an unsurveyed site; - (g) the safety altitude for the area overflown; and - (h) procedures to be followed in case of inadvertent entry into cloud. # BCAR.SPA.HEMS.145 HEMS operating base facilities - (a) If crew members are required to be on standby with a reaction time of less than 45
minutes, dedicated suitable accommodation shall be provided close to each operating base. - (b) At each operating base the pilots shall be provided with facilities for obtaining current and forecast weather information and shall be provided with satisfactory communications with the appropriate air traffic services (ATS) unit. Adequate facilities shall be available for the planning of all tasks # BCAR.SPA.HEMS.150 Fuel supply - (a) When the HEMS mission is conducted under VFR within a local and defined geographical area, standard fuel planning can be employed provided the operator establishes final reserve fuel to ensure that, on completion of the mission the fuel remaining is not less than an amount of fuel sufficient for: - (1) 30 minutes of flying time at normal cruising conditions; or (2) when operating within an area providing continuous and suitable precautionary landing sites, 20 minutes of flying time at normal cruising speed. # BCAR.SPA.HEMS.155 Refuelling with passengers embarking, on board or disembarking When the commander considers refuelling with passengers on board to be necessary, it can be undertaken either rotors stopped or rotors turning provided the following requirements are met: - (a) door(s) on the refuelling side of the helicopter shall remain closed; - (b) door(s) on the non-refuelling side of the helicopter shall remain open, weather permitting; - (c) fire fighting facilities of the appropriate scale shall be positioned so as to be immediately available in the event of a fire; and - (d) sufficient personnel shall be immediately available to move patients clear of the helicopter in the event of a fire. # **SUBPART K: HELICOPTER OFFSHORE OPERATIONS** Not Applicable # SUBPART L: SINGLE-ENGINED TURBINE AEROPLANE OPERATIONS AT NIGHT OR IN INSTRUMENT METEOROLOGICAL CONDITIONS (SETIMC) Not Applicable # **SUBPART M: ELECTRONIC FLIGHT BAGS (EFB)** # SPA.EFB.100 Use of electronic flight bags (EFBs) – operational approval - (a) A commercial air transport operator shall only use a type B EFB application if the operator has been granted an approval by the BCAA for such use. - (b) In order to obtain an operational approval from the competent authority for the use of a type B EFB application, the operator shall provide evidence that: - a risk assessment related to the use of the EFB device that hosts the application and to the EFB application and its associated function(s) has been conducted, identifying the associated risks and ensuring that they are appropriately managed and mitigated; - 2. the human–machine interfaces of the EFB device and the EFB application have been assessed against human factors principles; - 3. it has established an EFB administration system and that procedures and training requirements for the administration and use of the EFB device and the EFB application have been established and implemented; these shall include procedures for: - (i) operating the EFB; - (ii) the management of changes to the EFB; - (iii) the management of EFB data; - (iv) EFB maintenance; and - (v) EFB security; - the EFB host platform is suitable for the intended use of the EFB application. This demonstration shall be specific to the EFB application and the EFB host platform on which the application is installed. AMC1 BCAR.SPA.EFB.100 (B) use of electronic flight bad (EFBs)- Operational approval # **SUITABILITY OF THE HARDWARE** # (a) Placement of the display The placement of the display should be consistent with the intended use of the EFB and should not create unacceptable workload for the pilot or require undue 'head-down' movements during critical phases of flight. Displays used for EFB chart applications should be located so as to be visible from the pilot' station with the minimum practicable deviation from their lines of vision when looking forward along the flight path. # (b) Display characteristics Consideration should be given to the long-term degradation of a display as a result of abrasion and ageing. AMC 25-11 (paragraph 3.16a) may be used as guidance to assess luminance and legibility aspects. Information displayed on the EFB should be legible to the typical user at the intended viewing distance(s) and under the full range of lighting conditions expected in a flight crew compartment, including direct sunlight. Users should be able to adjust the screen brightness of an EFB independently of the brightness of other displays in the flight crew compartment. In addition, when incorporating an automatic brightness adjustment, it should operate independently for each EFB in the flight crew compartment. Brightness adjustment using software means may be acceptable provided that this operation does not adversely affect the flight crew workload. Buttons and labels should have adequate illumination for night use. 'Buttons and labels' refers to hardware controls located on the display itself. All controls should be properly labelled for their intended functions, except if no confusion is possible. The 90-degree viewing angle on either side of each flight crew member's line of sight may be unacceptable for certain EFB applications if aspects of the display quality are degraded at large viewing angles (e.g. the display colours wash out or the displayed colour contrast is not discernible at the installation viewing angle). # (c) Power source The design of a portable EFB system should consider the source of electrical power, the independence of the power sources for multiple EFBs, and the potential need for an independent battery source. A non-exhaustive list of factors to be considered includes: - (1) the possibility to adopt operational procedures to ensure an adequate level of safety (for example, a minimum preflight level of charge); - (2) the possible redundancy of portable EFBs to reduce the risk of exhausted batteries; - (3) the availability of backup battery packs to ensure that there is an alternative source of power. Battery-powered EFBs that have aircraft power available for recharging the internal EFB batteries are considered to have a suitable backup power source. For EFBs that have an internal battery power source, and that are used as an alternative for paper documentation that is required by CAT.GEN.MPA.180, the operator should either have at least one EFB connected to an aircraft power bus, or have established and documented mitigation means and procedures to ensure that sufficient power with acceptable margins will be available during the whole flight. #### (d) Environmental testing Environmental testing, in particular testing for rapid decompression, should be performed on EFBs that host applications that are required to be used during flight following a rapid decompression, and/or on EFBs with an environmental operational range that is potentially insufficient with respect to the foreseeable flight crew compartment operating conditions. The information from the rapid-decompression test of an EFB is used to establish the procedural requirements for the use of that EFB device in a pressurised aircraft. Rapid-decompression testing should follow the EUROCAE ED-14D/RTCA DO-160D (or later revisions) guidelines for rapid-decompression testing up to the maximum operating altitude of the aircraft at which the EFB is to be used. (1) Pressurised aircraft: if a portable EFB has successfully completed rapid-decompression testing, then no mitigating procedures for depressurisation events need to be developed. If a portable EFB has failed the rapid-decompression testing while turned ON, but successfully completed it when turned OFF, then procedures should ensure that at least one EFB on board the aircraft either remains OFF during the applicable flight phases, or is configured so that no damage will be incurred should rapid decompression occur in flight at altitudes higher than 10 000 ft above mean sea level (AMSL). If an EFB system has not undergone a rapid-decompression test or it has failed the test, then alternate procedures or a paper backup should be available for the related type B EFB applications. - (2) Non-pressurised aircraft: rapid-decompression testing is not required for an EFB used in a non pressurised aircraft. It should be demonstrated that the EFB can operate reliably up to the maximum operating altitude of the aircraft. If the EFB cannot be operated at the maximum operating altitude of the aircraft, procedures should be established to preclude operation of the EFB above the maximum demonstrated EFB operating altitude while still maintaining the availability of any required aeronautical information displayed on the EFB. The results of testing performed on a specific EFB model configuration (as identified by the EFB hardware manufacturer) may be applicable to EFBs of the same model used in other aircraft installations, in which case these generic environmental tests may not need to be duplicated. The operator should collect and retain: - (1) evidence of these tests that have already been accomplished; or - (2) suitable alternative procedures to deal with the total loss of the EFB system. Rapid decompression tests do not need to be repeated if the EFB model identification and the battery type do not change. The testing of operational EFBs should be avoided if possible to preclude the infliction of unknown damage to the devices during testing. Operators should account for the possible loss or erroneous functioning of the EFB in abnormal environmental conditions. The safe stowage and the use of the EFB under any foreseeable environmental conditions in the flight crew compartment, including turbulence, should be evaluated. AMC2 BCAR.SPA.EFB.100 (b) use of electronic flight bags(EFBs) operational approval # **CHANGES** Modifications to an EFB system may have to be introduced either by the EFB system supplier, the EFB applications developer, or by the operator itself. Those modifications that: - (a) do not result in a hardware change that would require a re-evaluation of the HMI and human
factors aspects in accordance with AMC1 SPA.EFB.100(b)(2); - (b) do not bring any change to the calculation algorithms of a type B EFB application; - (c) do not bring any change to the HMI of a type B EFB application that requires a change to the flight crew training programme or operational procedures; - (d) introduce a new type A EFB application or modify an existing one (provided its software classification remains type A); - (e) do not introduce any additional functionality to an existing type B EFB application; or - (f) update an existing database necessary to use an existing type B EFB application, may be introduced by the operator without the need to be approved by its competent authority. These changes should, nevertheless, be controlled and properly tested prior to use during flights. The modifications in the following non-exhaustive list are considered to meet these criteria: (a) operating system updates; - (b) chart or airport database updates; - (c) updates to introduce fixes (i.e. patches); and - (d) installation and modification of a type A EFB application. For all other types of modification, the operator should apply the change management procedure approved by the competent authority in accordance with ARO.GEN.310(c). This includes the extension of the use of an EFB system, for which the operator already holds an approval, to another aircraft type of the operator's fleet. In the specific case of a complete change of the hardware hosting the EFB application, the operator should demonstrate to its competent authority that the new hardware is suitable for the intended use of the EFB application as per AMC1 SPA.EFB.100(b). # AMC3 BCAR.SPA.EFB.100 (b) use of electronic flight bags(EFBs) #### **OPERATIONAL EVALUATION TEST** (a) The operator should perform an operational evaluation test which should enable verification that the relevant requirements of SPA.EFB have been satisfied before a final decision is made on the operational use of the EFB. An operational evaluation test should be performed by operators seeking an operational approval for the use of a type B EFB application. This does not apply to changes to a type B EFB application whose use has already been approved by the operator's competent authority. The operator should notify its competent authority of its intention to perform an operational evaluation test by providing a plan, which should contains at least the following information: - (1) the starting date of the operational evaluation test; - (2) the duration of the operational evaluation test; - (3) the aircraft involved; - (4) the EFB hardware and type(s) of software including version details; - (5) the EFB policy and procedure manual; - (6) their EFB risk assessment; and - (7) for type B EFB applications that replace the paper documentation without initial retention of a paper backup, and type B EFB applications that do not replace the paper documentation: - (i) a simulator line-oriented flight training (LOFT) session programme to verify the use of the EFB under operational conditions including normal, abnormal, and emergency conditions; and - (ii) a proposed schedule to allow the competent authority to observe the EFB application use in actual flight operations. The operational evaluation test should consist of an in-service proving period with a standard duration of 6 months. A reduced duration may be considered after taking into account the following criteria: - (1) the operator's previous experience with EFBs; - (2) a high number of flights operated monthly; - (3) the intended use of the EFB system; and - (4) the mitigation means defined by the operator. An operator wishing to reduce the duration of the operational evaluation test to less than 6 months should provide its competent authority with the appropriate justification in its operational evaluation plan. The competent authority may ask for an operational evaluation test lasting more than 6 months if the number of flights operated in this period is not considered sufficient to evaluate the EFB system. The general purpose of the in-service proving period for type B EFB applications that replaces the paper documentation is for the operator to demonstrate that an EFB system provides at least the levels of accessibility, usability and reliability of the paper documentation. For all type B EFB applications, the proving period should show that: - (1) the flight crew members are able to operate the EFB applications; - (2) the operator's administration procedures are in place and function correctly; - (3) the operator is capable of providing timely updates to the applications on the EFB, where a database is involved; - (4) the introduction of the EFB does not adversely affect the operator's operating procedures, and that alternative procedures provide an acceptable equivalent if the EFB system is not available; - (5) for a system including uncertified elements (hardware or software), that the system operates correctly and reliably; and - (6) the assumptions used for the risk assessment are not disproved for the type of operations intended (with or without a paper backup). In the case of charts or in-flight weather (IFW) applications displaying the own-ship position in flight, the in-service proving should allow to confirm the absence of frequent losses of position and to assess the resulting workload for the flight crew. The operator may remove the paper backup once it has shown that the EFB system is sufficiently robust. b) Final operational report The operator should produce and retain a final operational report, that summarises all the activities performed and the means of compliance that were used, supporting the operational use of the EFB system. AMC4 BCAR.SPA.EFB.100 (b) use of electronic flight bags(EFBs) #### **EFB APPLICATIONS WITH ETSO AUTHORISATIONS** EFB software applications may be approved by EASA e.g. by means of an ETSO authorisation. Such approved EFB applications are considered to be compliant with the requirements of SPA.EFB.100(b) that are included in the scope of the approval, provided that the EFB software is installed and used in conformity with its installation and operational instructions and limitations. GM1 BCAR.SPA.EFB.100 (b) use of electronic flight bags (EFBs) operational approval # **FINAL OPERATIONAL REPORT** An example of typical items for the final operational report is provided below: - (a) System description and classification of the EFB system: - (1) a general description of the EFB system and of the hardware and software applications. - (b) Software applications: - (1) a list of the type A EFB applications installed; - (2) a list of the type B EFB applications installed; and - (3) a list of the miscellaneous software applications installed. - (c) Hardware: For portable EFBs used without installed resources, relevant information about or reference to: - (1) the EMI compliance demonstration; - (2) the lithium battery compliance demonstration; - (3) the depressurisation compliance demonstration; and - (4) details of the power source. - (5) For portable EFBs served by installed resources: - (6) details of the airworthiness approval for the mounting device; - (7) a description of the placement of the EFB display; - (8) details of the use of installed resources; - (9) information on the EMI compliance demonstration; - (10)information on the lithium battery compliance demonstration; - (11)information on the depressurisation compliance demonstration; - (12) details of the power source; - (13)8) details of any data connectivity. For installed EFBs: - (1) details of the airworthiness approval for installed equipment. - (d) Certification documentation: - (1) EFB limitations contained within the AFM; - (2) guidelines for EFB application developers; and - (3) guidelines for EFB system suppliers. - (e) Specific considerations for performance applications: - (1) details of performance data validation performed. - (f) Operational assessment: - (1) details of the EFB risk assessment performed; - (2) details of the human–machine interface (HMI) assessment performed for type B EFB applications; - (3) details of flight crew operating procedures: - (i) for using EFB systems with other flight crew compartment systems; - (ii) ensuring flight crew awareness of EFB software/database revisions; - (iii) to mitigate and/or control increased workload; and - (iv) describing flight crew responsibilities for performance and weight and balance calculations; - (4) details of proposed compliance monitoring oversight of the EFB system; - (5) details of EFB system security measures; - (6) details of EFB administration procedures, including provision of the EFB policy and procedures manual and EFB administrator qualifications; - (7) details of the procedure for electronic signatures; - (8) details of the system for routine EFB system maintenance; - (9) details of EFB training including flight crew training: - (i) initial training; - (ii) differences training; and - (iii) recurrent training; - (10) Report of the operational evaluation test: - (i) proposals for the initial retention of a paper backup; - (ii) proposals for the commencement of operations without any paper backup; - (11) EFB platform/hardware description; - (12) a description of each software application to be included in the assessment; - (13) a human factors assessment for the complete EFB system, human—machine interface (HMI), and all the software applications that covers: - (i) the flight crew workload in both single-pilot and multi-pilot aircraft; - (ii) the size, resolution, and legibility of symbols and text; (iii) for navigation chart displays: access to desired charts, access to information within a chart, grouping of information, general layout, orientation (e.g. track-up, north-up), depiction of scale information. GM2 BCAR.SPA.EFB.100 (b) use of electronic flight bags (EFBs) operational approval #### **EVALUATION BY EASA** The operator may use the results
of an EFB application evaluation performed by EASA to support its application to its competent authority for an operational approval. # AMC1 BCAR.SPA.EFB.100 (b) use of electronic flight bags(EFBs) operational approval #### **RISK ASSESSMENT** #### (a) General Prior to the use of any EFB system, the operator should perform a risk assessment for all type B EFB applications and for the related EFB hardware, as part of its hazard identification and risk management process. If an operator makes use of a risk assessment established by the software developer, the operator should ensure that its specific operational environment is taken into account. The risk assessment should: - (1) evaluate the risks associated with the use of an EFB; - (2) identify potential losses of function or malfunction (with detected and undetected erroneous outputs) and the associated failure scenarios; - (3) analyse the operational consequences of these failure scenarios; - (4) establish mitigating measures; and - (5) ensure that the EFB system (hardware and software) achieves at least the same level of accessibility, usability, and reliability as the means of presentation it replaces. In considering the accessibility, usability, and reliability of the EFB system, the operator should ensure that the failure of the complete EFB system, as well as of individual applications, including corruption or loss of data, and erroneously displayed information, has been assessed and that the risks have been mitigated to an acceptable level. This risk assessment should be defined before the beginning of the trial period and should be amended accordingly, if necessary, at the end of this trial period. The results of the trial should establish the configuration and use of the system. Once the operator has been granted the operational approval for the use of the related EFB applications, it should ensure that the related risk assessment is maintained and kept up to date. When the EFB system is intended to be introduced alongside a paper-based system, only the failures that would not be mitigated by the use of the paper-based system need to be addressed. In all other cases, and especially when an accelerated introduction with a reduced trial period or a paperless use of a new EFB system is intended, a complete risk assessment should be performed. # (b) Assessing and mitigating the risks Some parameters of EFB applications may depend on entries that are made by flight crew/dispatchers, whereas others may be default parameters from within the system that are subject to an administration process (e.g. the runway line-up allowance in an aircraft performance application). In the first case, mitigation means would mainly concern training and flight crew procedure aspects, whereas in the second case, mitigation means would more likely focus on the EFB administration and data management aspects. The analysis should be specific to the operator concerned and should address at least the following points: - (1) The minimisation of undetected erroneous outputs from applications and assessment of the worst credible scenario; - (2) Erroneous outputs from the software application, including: - (i) a description of the corruption scenarios that were analysed; and - (ii) a description of the mitigation means; - (3) Upstream processes including: - (i) the reliability of root data used in applications (e.g. qualified input data, such as databases produced under ED-76/DO-200A, 'Standards for Processing Aeronautical Data'); - (ii) the software application validation and verification checks according to relevant industry standards, if applicable; and - (iii) the independence between application software components, e.g. robust partitioning between EFB applications and other airworthiness certified software applications; - (4) A description of the mitigation means to be used following the detected failure of an application, or of a detected erroneous output; - (5) The need for access to an alternate power supply in order to ensure the availability of software applications, especially if they are used as a source of required information. As part of the mitigation means, the operator should consider establishing reliable alternative means to provide the information available on the EFB system. The mitigation means could be, for example, one of, or a combination of, the following: - (1) the system design (including hardware and software); - (2) a backup EFB device, possibly supplied from a different power source; - (3) EFB applications being hosted on more than one platform; - (4) a paper backup (e.g. quick reference handbook (QRH)); and - (5) procedural means. EFB system design features such as those assuring data integrity and the accuracy of performance calculations (e.g. a 'reasonableness' or 'range' check) may be integrated in the risk assessment to be performed by the operator. AMC1 BCAR.SPA.EFB.100 (b)2 use of electronic flight bags(EFBs) operational approval #### **HUMAN-MACHINE INTERFACE ASSESSMENT AND HUMAN FACTORS CONSIDERATIONS** - (a) The operator should perform an assessment of the human–machine interface (HMI), the installation, and aspects governing crew resource management (CRM) when using the EFB system. - The HMI assessment is key to identifying acceptable mitigation means, e.g.: - (1) to establish procedures for reducing the risk of making errors; and - (2) to control and mitigate the additional workload related to EFB use. - (b) The assessment should be performed by the operator for each kind of device and application installed on the EFB. The operator should assess the integration of the EFB into the flight deck environment, considering both physical integration (e.g. anthropometrics, physical interference, etc.) and cognitive ergonomics (the compatibility of look and feel, workflows, alerting philosophy, etc.). - (1) Human-machine interface The EFB system should provide a consistent and intuitive user interface within and across the various hosted applications and with flight deck avionics applications. This should include but is not limited to data entry methods, colour-coding philosophies, and symbology. # (2) Input devices When choosing and designing input devices such as keyboards or cursor-control devices, applicants should consider the type of entry to be made and also flight crew compartment environmental factors, such as turbulence, that could affect the usability of that input device. Typically, the performance parameters of cursor-control devices should be tailored for the function of the intended application as well as for the flight crew compartment environment. (3) Consistency # (i) Consistency between EFBs and applications: Particular attention should be paid to the consistency of all interfaces, in particular when one provider develops the software application and another organisation integrates it into the EFB. (ii) Consistency with flight deck applications: Whenever possible, EFB user interfaces should be consistent with the other flight deck avionics applications with regard to design philosophy, look and feel, interaction logic, and workflows. #### (4) Messages and the use of colours For any EFB system, EFB messages and reminders should be readily and easily detectable and intelligible by the flight crew under all foreseeable operating conditions. The use of red and amber colours should be limited and carefully considered. EFB messages, both visual and aural, should be, as far as practicable, inhibited during critical phases of the flight. Flashing text or symbols should be avoided in any EFB application. Messages should be prioritised according to their significance for the flight crew and the message prioritisation scheme should be documented in the operator's EFB policy and procedure manual. Additionally, during critical phases of the flight, information necessary to the pilot should be continuously presented without uncommanded overlays, pop-ups, or pre-emptive messages, except for those indicating the failure or degradation of the current EFB application. However, if there is a regulatory or technical standard order (TSO) requirement that is in conflict with the recommendation above, that requirement should take precedence. # (5) System error messages If an application is fully or partially disabled or is not visible or accessible to the user, it may be desirable to have an indication of its status available to the user upon request. Certain non-essential applications such as those for email connectivity and administrative reports may require an error message when the user actually attempts to access the function, rather than an immediate status annunciation when a failure occurs. EFB status and fault messages should be documented in the operator's EFB policy and procedure manual. #### (6) Data entry screening and error messages If any user-entered data is not of the correct format or type needed by the application, the EFB should not accept the data. An error message should be provided that communicates which entry is suspect and specifies what type of data is expected. The EFB system should incorporate input error checking that detects input errors at the earliest possible point during entry, rather than on completion of a possibly lengthy invalid entry. #### (7) Error and failure modes # (i) Flight crew errors: The system should be designed to minimise the occurrence and effects of flight crew errors and to maximise the identification and resolution of errors. For example, terms for specific types of data or the format in which latitude/longitude is entered should be the same across systems. (ii) Identifying failure modes: The EFB system should alert the flight crew of EFB system failures. # (8) Responsiveness of applications The EFB system should provide feedback to the user when a user input is performed. If the system is busy with internal tasks that preclude the immediate processing of a user input (e.g. performing calculations,
self-tests, or refreshing data), the EFB should display a 'system busy' indicator (e.g. a clock icon) to inform the user that the system is occupied and cannot process inputs immediately. The timeliness of the EFB system response to a user input should be consistent with an application's intended function. The feedback and system response times should be predictable in order to avoid flight crew distractions and/or uncertainty. # (9) Off-screen text and content If the document segment is not visible in its entirety in the available display area, such as during 'zoom' or 'pan' operations, the existence of off-screen content should be clearly indicated in a consistent way. For some intended functions, it may be unacceptable if certain portions of documents are not visible. Also, some applications may not require an off-screen content indicator when the presence of off screen content is readily obvious. This should be evaluated based on the application and its intended operational function. If there is a cursor, it should be visible on the screen at all times while in use. #### (10) Active regions Active regions are regions to which special user commands apply. The active region can be text, a graphic image, a window, frame, or some other document object. These regions should be clearly indicated. # (11) Managing multiple open applications and documents If the electronic document application supports multiple open documents, or the system allows multiple open applications, an indication of which application and/or document is active should be continuously provided. The active document is the one that is currently displayed and responds to user actions. The user should be able to select which of the open applications or documents is currently active. In addition, the user should be able to find which flight crew compartment applications are running and easily switch to any of these applications. When the user returns to an application that was running in the background, it should appear in the same state as when the user left that application, with the exception of differences stemming from the progress or completion of processing performed in the background. # (12) Flight crew workload The positioning of the EFB and the procedures associated with its use should not result in undue flight crew workload. Complex, multi-step-data-entry tasks should be avoided during take-off, landing, and other critical phases of the flight. An evaluation of the EFB intended functions should include a qualitative assessment of the incremental flight crew workload, as well as the flight crew system interfaces and their safety implications. AMC1 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval ## **EFB ADMINISTRATOR** The operator should appoint an EFB administrator responsible for the administration of the EFB system within the operator's organisation. The EFB administrator is the primary link between the operator and the EFB system and software suppliers. The EFB administrator function may be contracted to an external organisation in accordance with ORO.GEN.205. Complex EFB systems may require more than one individual with appropriate authority within the operator's management structure to perform the administration process, but one person should be designated as the EFB administrator responsible for the complete system. The EFB administrator is the person in overall charge of the EFB system, and should be responsible for ensuring that any hardware conforms to the required specification, and that no unauthorised software is installed. They should also be responsible for ensuring that only the current versions of the application software and data packages are installed on the EFB system. The EFB administrator should be responsible: - (a) For all the EFB applications installed, and for providing support to the EFB users regarding these applications; - (b) For checking potential security issues associated with the applications installed; - (c) For hardware and software configuration management of the EFBs, and, in particular, for ensuring that no unauthorised software is installed. - The EFB administrator should ensure that miscellaneous software applications do not adversely impact on the operation of the EFB and should include miscellaneous software applications in the scope of the configuration management of the EFB. - This does not preclude EFB devices from being allocated to specific flight crew members. In those cases where it is demonstrated that miscellaneous software applications run in a way that is fully segregated and partitioned from the EFB or avionics applications (e.g. on a separate operating system on a distinct 'personal' hard drive partition that is selected when the EFB boots up), the administration of these miscellaneous software applications can be exercised by the flight crew members instead of by the EFB administrator. - (d) For ensuring that only valid versions of the application software and current data packages are installed on the EFB system; and - (e) For ensuring the integrity of the data packages used by the applications installed. The operator should make arrangements to ensure the continuity of the management of the EFB system in the absence of the EFB administrator. Each person involved in EFB administration should receive appropriate training for their role and should have a good knowledge of the proposed system hardware, operating system and relevant software applications, and also of the appropriate regulatory requirements related to the use of EFBs. The content of this training should be determined with the aid of the EFB The operator should ensure that the persons involved in EFB administration keep their knowledge about the EFB system and its security up to date. AMC2 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval ### **EFB POLICY AND PROCEDURES MANUAL** system supplier or application supplier. The operator should establish procedures, documented in an EFB policy and procedures manual, to ensure that no unauthorised changes take place. The EFB policy and procedures manual may be fully or partially integrated in the operations manual. The EFB policy and procedures manual should also address means to ensure that the content and databases of the EFB are valid and up to date, in order to ensure the integrity of the EFB data. This may include establishing revision-control procedures so that flight crew members and others can ensure that the contents of the system are current and complete. These revision control procedures may be similar to the revision control procedures used for paper or other storage means. The EFB policy and procedures manual should also clearly identify those parts of the EFB system that can be accessed and modified by the operator's EFB administration process and those parts that are only accessible by the EFB system supplier. For data that is subject to a revision cycle control process, it should be readily evident to the user which revision cycle has been incorporated in the information obtained from the system. Procedures should specify what action to take if the applications or databases loaded on the EFB are outdated. This manual should at least include the following: - (a) All EFB-related procedures, including: - (1) operating procedures; - (2) security procedures; - (3) maintenance procedures; - (4) software control procedures; - (b) Management of changes to content/databases; - (c) Notifications to crews of updates; - (d) If any applications use information that is specific to the aircraft type or tail number, guidance on how to ensure that the correct information is installed on each aircraft; - (e) Procedures to avoid corruption/errors when implementing changes to the EFB system; and - (f) In cases involving multiple EFBs in the flight crew compartment, procedures to ensure that they all have the same content/databases installed. The EFB administrator should be responsible for the procedures and systems documented in the EFB policy and procedures manual that maintain EFB security and integrity. This includes system security, content security, access security, and protection against malicious software. AMC3 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags(EFBs) operational approval ### **PROCEDURES** (a) General If an EFB system generates information similar to that generated by existing certified systems, procedures should clearly identify which information source will be the primary, which source will be used for backup information, and under which conditions the backup source should be used. Procedures should define the actions to be taken by the flight crew when information provided by an EFB system is not consistent with that from other flight crew compartment sources, or when one EFB system shows different information than the other. In the case of EFB applications providing information which might be affected by Notice(s) to Airmen NOTAMS (e.g. Airport moving map display (AMMD), performance calculation, etc.), the procedure for the use of these applications should include the handling of the relevant NOTAMS before their use. - (b) Flight crew awareness of EFB software/database revisions The operator should have a procedure in place to verify that the configuration of the EFB, including software application versions and, where applicable, database versions, are up to date. Flight crew members should have the ability to easily verify the validity of database versions used on the EFB. Nevertheless, flight crew members should not be required to confirm the revision dates for other databases that do not adversely affect flight operations, such as maintenance log forms or a list of airport codes. An example of a date-sensitive revision is that applied to an aeronautical chart database. Procedures should specify what actions should be taken if the software applications or databases loaded on the EFB
system are outdated. - (c) Procedures to mitigate and/or control workload Procedures should be designed to mitigate and/or control additional workload created by using an EFB system. The operator should implement procedures to ensure that, while the aircraft is in flight or moving on the ground, flight crew members do not become preoccupied with the EFB system at the same time. Workload should be shared between flight crew members to ensure ease of use and continued monitoring of other flight crew functions and aircraft equipment. These procedures should be strictly applied in flight and the operator should specify any times when the flight crew may not use a specific EFB application. # (d) Dispatch The operator should establish dispatch criteria for EFB systems. The operator should ensure that the availability of the EFB system is confirmed by preflight checks. Instructions to the flight crew should clearly define the actions to be taken in the event of any EFB system deficiency. Mitigation should be in the form of maintenance and/or operational procedures for items such as: - (1) replacement of batteries at defined intervals as required; - (2) ensuring there is a fully charged backup battery on board; - (3) the flight crew checking the battery charging level before departure; and - (4) the flight crew switching off the EFB in a timely manner when the aircraft power source is lost. In the event of a partial or complete failure of the EFB, specific dispatch procedures should be followed. These procedures should be included either in the minimum equipment list (MEL) or in the operations manual, and should ensure an acceptable level of safety. Particular attention should be paid to establishing specific dispatch procedures allowing to obtain operational data (e.g. performance data) in case of a failure of an EFB hosting an application that normally provides such calculated data. When the integrity of data input and output is verified by cross-checking and gross-error checks, the same checking principle should be applied to alternative dispatch procedures to ensure equivalent protection. # (e) Maintenance Procedures should be established for the routine maintenance of the EFB system and detailing how unserviceability and failures are to be dealt with to ensure that the integrity of the EFB system is preserved. Maintenance procedures should also include the secure handling of updated information and how this information is validated and then promulgated in a timely manner and in a complete format to all users. As part of the EFB system's maintenance, the operator should ensure that the EFB system batteries are periodically checked and replaced as required. Should faults or failures of the system arise, it is essential that such failures are brought to the immediate attention of the flight crew and that the system is isolated until rectification action is taken. In addition to backup procedures to deal with system failures, a reporting system should be in place so that the necessary corrective action, either to a particular EFB system or to the whole system, is taken in order to prevent the use of erroneous information by flight crew members. ## (f) Security The EFB system (including any means used for updating it) should be secure from unauthorised intervention (e.g. by malicious software). The operator should ensure that adequate security procedures are in place to protect the system at the software level and to manage the hardware (e.g. the identification of the person to whom the hardware is released, protected storage when the hardware is not in use) throughout the operational lifetime of the EFB system. These procedures should guarantee that, prior to each flight, the EFB operational software works as specified and the EFB operational data is complete and accurate. Moreover, a system should be in place to ensure that the EFB does not accept a data load that contains corrupted contents. Adequate measures should be in place for the compilation and secure distribution of data to the aircraft. Procedures should be transparent and easy to understand to follow and to oversee that: - (1) if an EFB is based on consumer electronics (e.g. a laptop) which can be easily removed, manipulated, or replaced by a similar component, that special consideration is given to the physical security of the hardware; - (2) portable EFB platforms are subject to allocation tracking to specific aircraft or persons; - (3) where a system has input ports, and especially if widely known protocols are used through these ports, or internet connections are offered, that special consideration is given to the risks associated with these ports; - (4) where physical media are used to update the EFB system, and especially if widely known types of physical media are used, that the operator uses technologies and/or procedures to assure that unauthorised content cannot enter the EFB system through these media. The required level of EFB security depends on the criticality of the functions used (e.g. an EFB that only holds a list of fuel prices may require less security than an EFB used for performance calculations). Beyond the level of security required to assure that the EFB can properly perform its intended functions, the level of security that is ultimately required depends on the capabilities of the EFB. ## (g) Electronic signatures Part-CAT and Part-M may require a signature when issuing or accepting a document (e.g. load sheet, technical logbook, notification to captain (NOTOC)). In order to be accepted as being equivalent to a handwritten signature, electronic signatures used in EFB applications need, as a minimum, to fulfil the same objectives and to assure the same degree of security as the handwritten or any other form of signature that they are intended to replace. AMC1 CAT.POL.MAB.105(c) provides the means to comply with the required handwritten signature or its equivalent for mass and balance documentation. On a general basis, in the case of required signatures, an operator should have in place procedures for electronic signatures that guarantee: - (1) their uniqueness: a signature should identify a specific individual and should be difficult to duplicate; - (2) their significance: an individual using an electronic signature should take deliberate and recognisable action to affix their signature; - (3) their scope: the scope of the information being affirmed with an electronic signature should be clear to the signatory and to the subsequent readers of the record, record entry, or document; - (4) their security: the security of an individual's handwritten signature is maintained by ensuring that it is difficult for another individual to duplicate or alter it; - (5) their non-repudiation: an electronic signature should prevent a signatory from denying that they affixed a signature to a specific record, record entry, or document; the more difficult it is to duplicate a signature, the likelier it is that the signature was created by the signatory; and - (6) their traceability: an electronic signature should provide positive traceability to the individual who signed a record, record entry, or any other document. An electronic signature should retain those qualities of a handwritten signature that guarantee its uniqueness. Systems using either a PIN or a password with limited validity (time wise) may be appropriate in providing positive traceability to the individual who affixed it. Advanced electronic signatures, qualified certificates and secured signature-creation devices needed to create them in the context of Regulation (EU) No 910/20141 are typically not required for EFB operations. AMC4 BCAR.SPA.EFB.100 (b) use of electronic flight bags(EFBs) operational approval #### **FLIGHT CREW TRAINING** (a) Flight crew members should be given specific training on the use of the EFB system before it is operationally used. Training should at least include the following: - (1) an overview of the system architecture; - (2) preflight checks of the system; - (3) limitations of the system; - (4) specific training on the use of each application and the conditions under which the EFB may and may not be used; - (5) restrictions on the use of the system, including cases where the entire system, or some parts of it, are not available; - (6) procedures for normal operations, including cross-checking of data entry and computed information; - (7) procedures to handle abnormal situations, such as a late runway change or a diversion to an alternate aerodrome; - (8) procedures to handle emergency situations; - (9) phases of the flight when the EFB system may and may not be used; - (10) human factors considerations, including crew resource management (CRM), on the use of the EFB; and - (11) additional training for new applications or changes to the hardware configuration. As far as practicable, it is recommended that the training simulator environments should include the EFBs in order to offer a higher level of representativeness. Consideration should also be given to the role that the EFB system plays in operator proficiency checks as part of recurrent training and checking, and to the suitability of the training devices used during training and checking. EFB training should be included in the relevant training programme established and approved in accordance with ORO.FC. # (b) EFB training and checking (1) Assumptions regarding flight crew members' previous experience Training for the use of the EFB should be for the purpose of operating the EFB itself and the applications hosted on it, and should not be intended to provide basic competence in areas such as aircraft performance, etc. Initial EFB training, therefore, should assume basic competence in the functions addressed by the software applications installed. Training should be adapted to the flight crew's experience and knowledge. (2) Programmes crediting previous EFB experience Training programmes for the EFB
may give credit for trainees' previous EFB experience. For example, previous experience of an aircraft performance application hosted on a portable EFB and using similar software may be credited towards training on an installed EFB with a performance application. (3) Initial EFB training Training required for the granting of an aircraft type rating may not recognise variants within the type nor the installation of particular equipment. Any training for the granting of a type qualification need not, therefore, recognise the installation or the use of an EFB unless it is installed equipment across all variants of the type. However, where training for the issuing of the type rating is combined with the operator's conversion course, the training syllabus should recognise the installation of the EFB where the operator's standard operating procedures (SOPs) are dependent on its use. Initial EFB training may consist of both ground-based and flight training, depending on the nature and complexity of the EFB system. An operator or approved training organisation (ATO) may use many methods for ground-based EFB training including written handouts or flight crew operating manual (FCOM) material, classroom instruction, pictures, videotapes, ground training devices, computer-based instruction, flight simulation training devices (FSTDs), and static aircraft training. Ground-based training for a sophisticated EFB lends itself particularly to computer-based training (CBT). Flight EFB training should be performed by a suitably qualified person during line flying under supervision (LIFUS) or during differences or conversion training. The following areas of emphasis should be considered when defining the initial EFB training programme: - (i) The use of the EFB hardware and the need for proper adjustment of lighting, etc., when the system is used in flight; - (ii) The intended use of each software application together with any limitations or prohibitions on its use; - (iii) Proper cross-checking of data inputs and outputs if an aircraft performance application is installed,; - (iv) Proper verification of the applicability of the information being used if a terminal chart application is installed; - (v) The need to avoid fixation on the map display if a moving map display is installed;; - (vi) Handling of conflicting information; - (vii) Failures of component(s) of the EFB; and - (viii) Actions to be taken following the failure of component(s) of the EFB, including cases of battery smoke or fire. ### (4) Initial EFB checking (i) Initial ground EFB checking The check performed following the ground-based element of initial EFB training may be accomplished by the use of a questionnaire (oral or written) or as an automated component of the EFB CBT, depending on the nature of the training performed. (ii) Skill test and proficiency check Where the operator's SOPs are dependent on the use of the EFB on the particular aircraft type or variant, proficiency in the use of the EFB should be assessed in the appropriate areas (e.g. item 1.1, item 1.5, etc., of Appendix 9 to Annex I (Part-FCL) to Commission Regulation (EU) No 1178/2011). (iii) Operator proficiency check Where an operator's SOPs are dependent on the use of an EFB, proficiency in its use should be assessed during the operator proficiency check (OPC). Where the OPC is performed on an FSTD not equipped with the operator's EFB, proficiency should be assessed by another acceptable means. (iv) Line check Where an operator's SOPs are dependent on the use of an EFB, proficiency in its use should be assessed during a line check. - (v) Areas of emphasis during EFB checking: - (A) Proficiency in the use of each EFB application installed; - (B) Proper selection and use of EFB displays; - (C) Where an aircraft performance application is installed, proper cross-checking of data inputs and outputs; - (D) Where a chart application is installed, proper checking of the validity of the information and the use of the chart clip function; - (E) Where a moving map display is installed, maintenance of a proper outside visual scan without prolonged fixation on the EFB, especially during taxiing; and - (F) Actions to be taken following the failure of component(s) of the EFB, including cases of battery smoke or fire. - (c) Differences or familiarisation training - When the introduction of the use of an EFB requires differences or familiarisation training to be carried out, the elements of initial EFB training should be used, as described above. - (d) Recurrent EFB training and checking - (1) Recurrent EFB training - Recurrent training is normally not required for the use of an EFB, provided the functions are used regularly in line operations. Operators should, however, include normal EFB operations as a component of the annual ground and refresher training. - In the case of mixed-fleet operations, or where the EFB is not installed across the fleet, additional recurrent training should be provided. - (2) Recurrent EFB checking - Recurrent EFB checking should be integrated in those elements of the licence proficiency check, the operator proficiency check and the line check applicable to the use of an EFB. - (e) Suitability of training devices - Where the operator's SOPs are dependent on the use of an EFB, the EFB should be present during the operator's training and checking. Where present, the EFB should be configured and operable in all respects as per the relevant aircraft. This should apply to: - (1) the operator's conversion course; - (2) differences or familiarisation training; and - (3) recurrent training and checking. Where the EFB system is based on a portable device used without any installed resources, it is recommended that the device should be present, operable, and used during all phases of the flight during which it would be used under the operator's SOPs. For all other types of EFB systems, it is recommended that the device should be installed and operable in the training device (e.g. an FFS) and used during all phases of the flight during which it would be used under the operator's SOPs. However, an operator may define an alternative means of compliance when the operator's EFB system is neither installed nor operable in the training device. *Note*: It is not necessary for the EFB to be available for those parts of the training and checking that are not related to the operator or to the operator's SOPs. AMC5 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval # PERFORMANCE AND MASS AND BALANCE APPLICATIONS (a) General Performance and mass and balance applications should be based on existing published data found in the AFM or performance manual, and should account for the applicable CAT.POL performance requirements. The applications may use algorithms or data spreadsheets to determine results. They may have the capability to interpolate within the information contained in the published data for the particular aircraft but they should not extrapolate beyond it. To protect against intentional and unintentional modifications, the integrity of the database files related to performance and to mass and balance (the performance database, airport database, etc.) should be checked by the program before performing any calculations. This check can be run once at the start-up of the application. Each software version should be identified by a unique version number. The compatibility between specific modules of a performance or mass and balance software application and the specific software revisions installed on a specific host (e.g. model of computer) should be ensured. The performance and mass and balance applications should record each computation performed (inputs and outputs) and the operator should have procedures in place to retain this information for at least 3 months. The operator should ensure that aircraft performance or mass and balance data provided by the application is correct compared with the data derived from the AFM (e.g. for take-off and landing performance data) or from other reference data sources (e.g. mass and balance manuals or databases, in-flight performance manuals or databases) under a representative cross-check of conditions (e.g. for take-off and landing performance applications: take-off and landing performance data on dry, wet, and contaminated runways, with different wind conditions and aerodrome pressure altitudes, etc.). The operator should establish procedures to define any new roles that the flight crew and, if applicable, the flight dispatcher, may have in creating, reviewing, and using performance calculations supported by EFB systems. In particular, the procedures should address cases where discrepancies are identified by the flight crew. ## (b) Testing The demonstration of the compliance of a performance or mass and balance application should include evidence of the software testing activities performed with the software version candidate for operational use. The testing can be performed by either the operator or a third party, as long as the testing process is documented and the responsibilities are identified. The testing activities should include human—machine interface (HMI) testing, reliability testing, and accuracy testing. HMI testing should demonstrate that the application is not prone to error and that calculation errors can be detected by the flight crew with the proposed procedures. The testing should demonstrate that the applicable HMI guidelines are followed and that the HMI is implemented as specified by the application developer and in paragraph (f). Reliability testing should show that the application in its operating environment (operating system (OS) and hardware included) is stable and deterministic, i.e. identical answers are generated each time the process is entered with identical parameters. Accuracy testing should demonstrate that the aircraft performance or mass and balance computations provided by the
application are correct in comparison with data derived from the AFM or other reference data sources, under a representative cross section of conditions (e.g. for take-off and landing performance applications: runway state and slope, different wind conditions and pressure altitudes, various aircraft configurations including failures with a performance impact, etc.). The demonstration should include a sufficient number of comparison results from representative calculations throughout the entire operating envelope of the aircraft, considering corner points, routine and break points. Any difference compared to the reference data that is judged significant should be examined and explained. When differences are due to more conservative calculations or reduced margins that were purposely built into the approved data, this approach should be clearly mentioned. Compliance with the applicable certification and operational rules needs to be demonstrated in any case. The testing method should be described. The testing may be automated when all the required data is available in an appropriate electronic format, but in addition to performing thorough monitoring of the correct functioning and design of the testing tools and procedures, operators are strongly suggested to perform additional manual verification. It could be based on a few scenarios for each chart or table of the reference data, including both operationally representative scenarios and 'corner-case' scenarios. The testing of a software revision should, in addition, include non-regression testing and testing of any fix or change. Furthermore, an operator should perform tests related to its customisation of the applications and to any element pertinent to its operation that was not covered at an earlier stage (e.g. airport database verification). ### (c) Procedures Specific care is needed regarding the flight crew procedures concerning take-off and landing performance or mass and balance applications. The flight crew procedures should ensure that: - (1) calculations are performed independently by each flight crew member before data outputs are accepted for use; - (2) a formal cross-check is made before data outputs are accepted for use; such cross-checks should utilise the independent calculations described above, together with the output of the same data from other sources on the aircraft; - (3) a gross-error check is performed before data outputs are accepted for use; such gross-error checks may use either a 'rule of thumb' or the output of the same data from other sources on the aircraft; and - (4) in the event of a loss of functionality of an EFB through either the loss of a single application, or the failure of the device hosting the application, an equivalent level of safety can be maintained; consistency with the EFB risk assessment assumptions should be confirmed. # (d) Training The training should emphasise the importance of executing all take-off and landing performance or mass and balance calculations in accordance with the SOPs to assure fully independent calculations. Furthermore, due to optimisations included at various levels in performance applications, flight crew members may be confronted with new procedures and different aircraft behaviour (e.g. the use of multiple flap settings for take-off). The training should be designed and provided accordingly. Where an application allows the computing of both dispatch results (from regulatory or factored calculations) and other results, the training should highlight the specificities of those results. Depending on the representativeness of the calculations, flight crew members should be trained on any operational margins that might be required. The training should also address the identification and the review of default values, if any, and assumptions about the aircraft status or environmental conditions made by the application. - (e) Specific considerations for mass and balance applications position should be provided. - (f) Human-factors-specific considerations Input and output data (i.e. results) shall be clearly separated from each other. All the information necessary for a given calculation task should be presented together or be easily accessible. All input and output data should include correct and unambiguous terms (names), units of measurement (e.g. kg or lb), and, when applicable, an index system and a CG-position declaration (e.g. Arm/%MAC). The units should match the ones from the other flight-crew-compartment sources for the same kind of data. Airspeeds should be provided in a form that is directly useable in the flight crew compartment, unless the unit clearly indicates otherwise (e.g. Knots Calibrated Air Speed (KCAS)). Any difference between the type of airspeed provided by the EFB application and the type provided by the aircraft flight manual (AFM) or flight crew operating manual (FCOM) performance charts should be mentioned in the flight crew guides and training material. If the landing performance application allows the computation of both dispatch (regulatory, factored) and other results (e.g. in-flight or unfactored), flight crew members should be made aware of the computation mode used. ### (1) Inputs: The application should allow users to clearly distinguish user entries from default values or entries imported from other aircraft systems. Performance applications should enable the flight crew to check whether a certain obstacle is included in the performance calculations and/or to include new or revised obstacle information in the performance calculations. #### (2) Outputs: All critical assumptions for performance calculations (e.g. the use of thrust reversers, full or reduced thrust/power rating) should be clearly displayed. The assumptions made about any calculation should be at least as clear to the flight crew members as similar information would be on a tabular chart. All output data should be available in numbers. The application should indicate when a set of entries results in an unachievable operation (for instance, a negative stopping margin) with a specific message or colour scheme. This should be done in accordance with the relevant provisions on messages and the use of colours. In order to allow a smooth workflow and to prevent data entry errors, the layout of the calculation outputs should be such that it is consistent with the data entry interface of the aircraft applications in which the calculation outputs are used (e.g. flight management systems). ### (3) Modifications: The user should be able to easily modify performance calculations, especially when making last minute changes. The results of calculations and any outdated input fields should be deleted whenever: - (i) modifications are entered; - (ii) the EFB is shut down or the performance application is closed; or - (iii) the EFB or the performance application has been in a standby or 'background' mode for too long, i.e. such that it is likely that when it is used again, the inputs or outputs will be outdated. AMC6 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval ### AIRPORT MOVING MAP DISPLAY (AMMD) APPLICATION WITH OWN-SHIP POSITION (a) General An AMMD application should not be used as the primary means of navigation for taxiing and should be only used in conjunction with other materials and procedures identified within the operating concept (see paragraph e)). When an AMMD is in use, the primary means of navigation for taxiing remains the use of normal procedures and direct visual observation out of the flight-crew-compartment window. Thus, as recognised in ETSO-C165a, an AMMD application with a display of own-ship position is considered to have a minor safety effect for malfunctions that cause the incorrect depiction of aircraft position (own-ship), and the failure condition for the loss of function is classified as 'no safety effect'. (b) Minimum requirements AMMD software that complies with European Technical Standard Order ETSO-C165a is considered to be acceptable. In addition, the system should provide the means to display the revision number of the software installed. To achieve the total system accuracy requirements of ETSO-C165a, an airworthiness-approved sensor using the global positioning system (GPS) in combination with a medium-accuracy database compliant with EUROCAE ED-99C/RTCA DO-272C, 'User Requirements for Aerodrome Mapping Information,' (or later revisions) is considered one acceptable means. Alternatively, the use of non-certified commercial off-the-shelf (COTS) position sources may be acceptable in accordance with AMC7 SPA.EFB.100 (b)(3). - (c) Data provided by the AMMD software application developer The operator should ensure that the AMMD software application developer provides the appropriate data including: - (1) installation instructions or the equivalent as per ETSO-C165a Section 2.2 that address: - (i) the identification of each specific EFB system computing platform (including the hardware platform and the operating system version) with which this AMMD software application and database was demonstrated to be compatible; - (ii) the installation procedures and limitations for each applicable platform (e.g. required memory resources, configuration of Global Navigation Satellite System (GNSS) antenna position); - (iii) the interface description data including the requirements for external sensors providing data inputs; and - (iv) means to verify that the AMMD has been installed correctly and is functioning properly. - (2) any AMMD limitations, and known installation, operational, functional, or performance issues of the AMMD. - (d) AMMD software installation in the EFB - The operator should review the documents and the data provided by the AMMD developer, and ensure that the installation requirements of the AMMD software in the specific EFB platform and aircraft are addressed. Operators are required to perform any verification activities proposed by
the AMMD software application developer, as well as identify and perform any additional integration activities that need to be completed; and - (e) Operational procedures Changes to operational procedures of the aircraft (e.g. flight crew procedures) should be documented in the operations manual or user's guide as appropriate. In particular, the documentation should highlight that the AMMD is only designed to assist flight crew members in orienting themselves on the airport surface so as to improve the flight crew members' positional awareness during taxiing, and that it is not to be used as the basis for ground manoeuvring. (f) Training requirements The operator may use flight crew procedures to mitigate some hazards. These should include limitations on the use of the AMMD function or application. As the AMMD could be a compelling display and the procedural restrictions are a key component of the mitigation, training should be provided in support of an AMMD. All mitigation means that rely on flight crew procedures should be included in the flight crew training. Details of the AMMD training should be included in the operator's overall EFB training. AMC7 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval #### USE OF COMMERCIAL OFF-THE-SHELF (COTS) POSITION SOURCE COTS positions sources may be used for AMMD EFB applications and for EFB applications displaying the own-ship position in-flight when the following considerations are complied with: (a) Characterisation of the receiver: The position should originate from an airworthiness approved GNSS receiver, or from a COTS GNSS receiver fully characterised in terms of technical specifications and featuring an adequate number of channels (12 or more). The EFB application should, in addition to position and velocity data, receive a sufficient number of parameters related to the fix quality and integrity to allow compliance with the accuracy requirements (e.g. the number of satellites and constellation geometry parameters such as dilution of position (DOP), 2D/3D fix). (b) Installation aspects: If the COTS position sources are stand-alone PEDs, they should be treated as C-PEDs and their installation and use should follow the requirements of CAT.GEN.MPA.140. If an external COTS position source transmits wirelessly, cyber security aspects have to be considered. Non-certified securing systems should be assessed according to paragraph (h) of AMC1 CAT.GEN.MPA.141 (a). (c) Practical evaluation: As variables can be introduced by the placement of the antennas in the aircraft and the characteristics of the aircraft itself (e.g. heated and/or shielded windshield effects), the tests have to take place on the type of aircraft in which the EFB will be operated, with the antenna positioned at the location to be used in service. (1) COTS used as a position source for AMMD The test installation should record the data provided by the COTS position source to the AMMD application. The analysis should use the recorded parameters to demonstrate that the AMMD requirements are satisfactorily complied with in terms of the total system accuracy (taking into account database errors, latency effects, display errors, and uncompensated antenna offsets) within 50 metres (95 %). The availability should be sufficient to prevent distraction or increased workload due to frequent loss of position. When demonstrating compliance with the following requirements of DO-257A, the behaviour of the AMMD system should be evaluated in practice: - (i) indication of degraded position accuracy within 1 second (Section 2.2.4 (22)); and - (ii) indication of a loss of positioning data within 5 seconds (Section 2.2.4 (23)); conditions to consider are both a loss of the GNSS satellite view (e.g. antenna failure) and a loss of communication between the receiver and the EFB. (2) COTS position source used for applications displaying own-ship position in flight: Flight trials should demonstrate that the COTS GNSS availability is sufficient to prevent distraction or increased workload due to frequent loss of position. AMC8 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval ### **CHART APPLICATIONS** The navigation charts that are depicted should contain the information necessary, in an appropriate form, to perform the operation safely. Consideration should be given to the size, resolution and position of the display to ensure legibility whilst retaining the ability to review all the information required to maintain adequate situational awareness. In the case of chart application displaying own-ship position in-flight, AMC10 SPA.EFB.100 (b) (3) is applicable. AMC9 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval ### **IN-FLIGHT WEATHER APPLICATIONS** ### (a) General An in-flight weather (IFW) application is an EFB function or application enabling the flight crew to access meteorological information. It is designed to increase situational awareness and to support the flight crew when making strategic decisions. An IFW function or application may be used to access both information required to be on board (e.g. World Area Forecast Centre (WAFC) data) and supplemental weather information. The use of IFW applications should be non-safety-critical and not necessary for the performance of the flight. In order for it to be non-safety-critical, IFW data should not be used to support tactical decisions and/or as a substitute for certified aircraft systems (e.g. weather radar). Any current information from the meteorological documentation required to be carried on board or from aircraft primary systems should always prevail over the information from an IFW application. The displayed meteorological information may be forecasted and/or observed, and may be updated on the ground and/or in flight. It should be based on data from certified meteorological service providers or other reliable sources evaluated by the operator. The meteorological information provided to the flight crew should be, as far as possible, consistent with the information available to users of ground-based aviation meteorological information (e.g. operations control centre (OCC) staff, flight dispatchers, etc.) in order to establish common situational awareness and to facilitate collaborative decision-making. ### (b) Display Meteorological information should be presented to the flight crew in a format that is appropriate to the content of the information; coloured graphical depiction is encouraged whenever practicable. The IFW display should enable the flight crew to: - (1) distinguish between observed and forecasted weather data; - (2) identify the currency or age and validity time of the weather data; - (3) access the interpretation of the weather data (e.g. the legend); - (4) obtain positive and clear indications of any missing information or data and determine areas of uncertainty when making decisions to avoid hazardous weather; and - (5) be aware of the status of the data link that enables the necessary IFW data exchanges. Meteorological information in IFW applications may be displayed, for example, as an overlay over navigation charts, over geographical maps, or it may be a stand-alone weather depiction (e.g. radar plots, satellite images, etc.). If meteorological information is overlaid on navigation charts, special consideration should be given to HMI issues in order to avoid adverse effects on the basic chart functions. In case of display of own-ship position in flight, AMC10 SPA.EFB.100(b)(3) is applicable. The meteorological information may require reformatting to accommodate for example the display size or the depiction technology. However, any reformatting of the meteorological information should preserve both the geo-location and intensity of the meteorological conditions regardless of projection, scaling, or any other types of processing. (c) Training and procedures The operator should establish procedures for the use of an IFW application. The operator should provide adequate training to the flight crew members before using an IFW application. This training should address: - (1) limitations of the use of an IFW application: - (i) acceptable use (strategic planning only); - (ii) information required to be on board; and - (iii) latency of observed weather information and the hazards associated with utilisation of old information; - (2) information on the display of weather data: - (i) type of displayed information (forecasted, observed); - (ii) symbology (symbols, colours); and - (iii) interpretation of meteorological information; - (3) identification of failures and malfunctions (e.g. incomplete uplinks, data-link failures, missing info); - (4) human factors issues: - (i) avoiding fixation; and - (ii) managing workload. ### AMC10 BCAR.SPA.EFB.100 (b)3 use of electronic flight bags(EFBs) operational approval ## APPLICATIONS DISPLAYING OWN-SHIP POSITION IN FLIGHT (a) Limitations The display of own-ship position in flight as an overlay to other EFB applications should not be used as a primary source of information to fly or navigate the aircraft. Except on VFR flights over routes navigated by reference to visual landmark, the display of the own-ship symbol is allowed only in aircraft having a certified navigation display (moving map). In the specific case of IFW applications, the display of own-ship on such applications is restricted to aircraft equipped with a weather radar. (b) Position source and accuracy The display of own-ship position may be based on a certified GNSS or GNSS-based (e.g. GPS/IRS) position from certified aircraft equipment or on a portable COTS position source in accordance with AMC7 SPA.EFB.100(b)(3). The own-ship symbol should be removed and the flight crew notified if: (1) the position source indicates a degraded accuracy. The threshold to consider that the accuracy is degraded should be commensurate with the navigation performance required for the
current phase of flight and should not exceed 200 m when the own-ship is displayed above a terminal chart (i.e. SID, STAR, or instrument approach) or a depiction of a terminal procedure; - (2) the position data is reported as invalid by the GNSS receiver; or - (3) the position data is not received for 5 seconds. - (c) Charting data considerations If the map involves raster images that have been stitched together into a larger single map, it should be demonstrated that the stitching process does not introduce distortion or map errors that would not correlate properly with a GNSS-based own-ship symbol. (d) Human machine interface (HMI) (1) Interface The flight crew should be able to unambiguously differentiate the EFB function from avionics functions available in the cockpit, and in particular with the navigation display. A sufficiently legible text label 'AIRCRAFT POSITION NOT TO BE USED FOR NAVIGATION' or equivalent should be continuously displayed by the application if the own-ship position depiction is visible in the current display area over a terminal chart (i.e. SID, STAR, or instrument approach) or a depiction of a terminal procedure. (2) Display of own-ship symbol The own-ship symbol should be different from the ones used by certified aircraft systems intended for primary navigation. If directional data is available, the own-ship symbol may indicate directionality. If direction is not available, the own-ship symbol should not imply directionality. The colour coding should not be inconsistent with the manufacturer philosophy. (3) Data displayed The current map orientation should be clearly, continuously and unambiguously indicated (e.g., Track-up vs North-up). If the software supports more than one directional orientation for the own-ship symbol (e.g., Track-up vs North-up), the current own-ship symbol orientation should be indicated. The chart display in track-up mode should not create usability or readability issues. In particular, chart data should not be rotated in a manner that affects readability. The application zoom levels should be appropriate for the function and content being displayed and in the context of providing supplemental position awareness. The pilot should be able to obtain information about the operational status of the own-ship function (e.g. active, deactivated, degraded). During IFR, day-VFR without visual references or night VFR flight, the following parameters' values should not be displayed: - (i) Track/heading; - (ii) Estimated time of arrival (ETA); - (iii) Altitude; - (iv) Geographical coordinates of the current location of the aircraft; and - (v) Aircraft speed. - (4) Controls If a panning and/or range selection function is available, the EFB application should provide a clear and simple method to return to an own-ship-oriented display. A means to disable the display of the own-ship position should be provided to the flight crew. (e) Training and procedures The procedures and training should emphasise the fact that the display of own-ship position on charts or IFW EFB applications should not be used as a primary source of information to fly or navigate the aircraft or as a primary source of weather information. (1) Procedures: The following considerations should be addressed in the procedures for the use of charts or IFW EFB application displaying the own-ship position in flight by the flight crew: - (i) Intended use of the display of own-ship position in flight on charts or IFW EFB applications; - (ii) Inclusion of the EFB into the regular scan of flight deck systems indications. In particular, systematic cross-check with avionics before being used, whatever the position source; and - (iii) Actions to be taken in case of identification of a discrepancy between the EFB and avionics. - (2) Training: Crew members should be trained on the procedures for the use of the application, including the regular cross-check with avionics and the action in case of discrepancy. ## GM1 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval #### **EFB POLICY AND PROCEDURES MANUAL** The items that follow are the typical contents of an EFB policy and procedures manual that can be part of the operations manual. The proposed outline is very extensive. It may be adapted to the specific EFB system and to the size and complexity of the operations in which the operator is involved. - (a) Revision history; - (b) List of effective pages or paragraphs; - (c) Table of contents; - (d) Introduction: - (1) Glossary of terms and acronyms; - (2) EFB general philosophy, environment, and dataflow; - (3) EFB system architecture; - (4) Limitations of the EFB system; - (5) Hardware description; - (6) Operating system description; - (7) Detailed presentation of the EFB applications; - (8) EFB application customisation; - (9) Data management: - (i) data administration; - (ii) organisation and workflows; - (iii) data loading; - (iv) data revision mechanisms; - (v) approval workflow; - (vi) data publishing and dispatch; - (vii) customisation; - (viii) how to manage operator-specific documents; - (ix) airport data management; - (x) aircraft fleet definition; - (10) Data authoring: - (i) navigation and customisation; - (e) Hardware and operating system control and configuration: - (1) Purpose and scope; - (2) Description of the following processes: - (i) hardware configuration and part number control; - (ii) operating system configuration and control; - (iii) accessibility control; - (iv) hardware maintenance; - (v) operating system updating; - (3) Responsibilities and accountability; - (4) Records and filing; - (5) Documentary references; - (f) Software application control and configuration: - (1) Purpose and scope; - (2) Description of the following processes: - (i) version control; - (ii) software configuration management; - (iii) application updating process; - (3) Responsibilities and accountability; - (4) Records and filing; - (5) Documentary references; - (g) Flight crew: - (1) Training; - (2) Operating procedures (normal, abnormal, and emergency); - (h) Maintenance considerations; - (i) EFB security policy: - (1) Security solutions and procedures. ## GM2 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval #### **FLIGHT CREW TRAINING** The following might be a typical training syllabus, provided that it does not contradict the operational suitability data established in accordance with Regulation (EU) No 748/2012. - (a) Ground-based training: - (1) System architecture overview; - (2) Display unit features and use; - (3) Limitations of the system; - (4) Restrictions on the use of the system: - (i) phases of the flight; - (ii) alternate procedures (e.g. MEL); - (5) Applications as installed; - (6) Use of each application; - (7) Restrictions on the use of each application: - (i) phases of the flight; - (ii) alternate procedures (e.g. MEL); - (8) Data input; - (9) Cross-checking of data inputs and outputs; - (10) Use of data outputs; - (11) Alternate procedures (e.g. MEL); - (b) Flight training: - (1) Practical use of the display unit; - (2) Display unit controls; - (3) Data input devices; - (4) Selection of applications; - (5) Practical use of applications; - (6) Human factors considerations, including CRM; - (7) Situational awareness; - (8) Avoidance of fixation; - (9) Cross-checking of data inputs and outputs; - (10) Practical integration of EFB procedures into SOPs; - (11) Actions following the failure of component(s) of the EFB, including cases of battery smoke or fire; and - (12) Management of conflicting information. ## GM3 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval #### **SECURITY** Examples of typical safety and security defences are contained in the following non-exhaustive list: - (a) Individual system firewalls; - (b) The clustering of systems with similar safety standards into domains; - (c) Data encryption and authentication; - d) Virus scans; - (e) Keeping the OS up to date; - (f) Initiating air–ground connections only when required and always from the aircraft; - (g) 'Whitelists' for allowed internet domains; - (h) Virtual private networks (VPNs); - (i) Granting of access rights on a need-to-have basis; - (j) Troubleshooting procedures that consider security threats as potential root causes of EFB misbehaviour, and provide for responses to be developed to prevent future successful attacks when relevant; - (k) Virtualisation; and - (I) Forensic tools and procedures. # GM4 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval ### **IN-FLIGHT WEATHER (IFW) APPLICATIONS** 'Reliable sources' of data used by IFW applications are the organisations evaluated by the operator as being able to provide an appropriate level of data assurance in terms of accuracy and integrity. It is recommended that the following aspects be considered during that evaluation: - (a) The organisation should have a quality assurance system in place that covers the data source selection, acquisition/import, processing, validity period check, and the distribution phase; - (b) Any meteorological product provided by the organisation that is within the scope of the meteorological information included in the flight documentation as defined in MET.TR.215(e) (Annex V (Definitions of terms used in Annexes II to XIII) to Commission Implementing Regulation (EU) 2016/1377₁) should originate only from authoritative sources or certified providers and should not be transformed or altered, except for the purpose of packaging the data in the correct format. The organisation's process should provide assurance that the integrity of those products is preserved in the data for use by the IFW application. GM5 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval USE OF COMMERCIAL OFF-THE-SHELF (COTS) POSITION SOURCE - PRACTICAL EVALUATION The tests should consist of a statistically relevant sample of
taxiing. It is recommended to include taxiing at airports that are representative of the more complex airports typically accessed by the operator. Taxiing segment samples should include data that is derived from runways and taxiways, and should include numerous turns, in particular of 90 degrees or more, and segments in straight lines at the maximum speed at which the own-ship symbol is displayed. Taxiing segment samples should include parts in areas of high buildings such as terminals. The analysis should include at least 25 inbound and/or outbound taxiing segments between the parking location and the runway. During the tests, any unusual events (such as observing the own-ship symbol in a location on the map that is notably offset compared to the actual position, the own-ship symbol changing to non-directional when the aircraft is moving, and times when the own-ship symbol disappears from the map display) should be noted. For the test, the pilot should be instructed to diligently taxi on the centre line. GM6 BCAR.SPA.EFB.100 (b)(3) use of electronic flight bags (EFBs)-Operational approval ### APPLICATIONS DISPLAYING OWN-SHIP POSITION IN FLIGHT The depiction of a circle around the EFB own-ship symbol may be used to differentiate it from the avionics one.